Abstract:
A dehydrogenation reaction apparatus is disclosed. An embodiment of the present disclosure provides a dehydrogenation reaction apparatus, including: a dehydrogenation reactor that includes a reaction vessel configured to store a chemical hydride, and at least one partition wall partitioning an inner space of the reaction vessel into a plurality of reaction chambers; and a buffer tank configured to temporarily store hydrogen generated in the dehydrogenation reactor and then supply the hydrogen to the fuel cell.
Abstract:
A hybrid dehydrogenation reaction system includes: an acid aqueous solution tank having an acid aqueous solution; an exothermic dehydrogenation reactor including a chemical hydride of a solid state and receiving the acid aqueous solution from the acid aqueous solution tank for an exothermic dehydrogenation reaction of the chemical hydride and the acid aqueous solution to generate hydrogen; an LOHC tank including a liquid organic hydrogen carrier (LOHC); and an endothermic dehydrogenation reactor receiving the liquid organic hydrogen carrier from the LOHC tank and generating hydrogen through an endothermic dehydrogenation reaction of the liquid organic hydrogen carrier by using heat generated from the exothermic dehydrogenation reactor.
Abstract:
A dehydrogenation reaction device includes a dehydrogenation reactor having a solid chemical hydride and includes an add aqueous solution tank supplying an add aqueous solution to the dehydrogenation reactor. The dehydrogenation reactor includes a heating device, a cooling apparatus, a porous metal foam, or a combination thereof.
Abstract:
The present invention relates to an unmanned aerial vehicle system having a multi-rotor type rotary wing. The unmanned aerial vehicle system having a multi-rotor type rotary wing includes a first unmanned aerial vehicle, at least one second unmanned aerial vehicle, and a bridge that connects the first unmanned aerial vehicle and the at least one second unmanned aerial vehicle to be separable from each other, wherein the at least one second unmanned aerial vehicle is moveable by the first unmanned aerial vehicle in a state where the at least one second unmanned aerial vehicle is coupled to the first unmanned aerial vehicle by the bridge without being driven, and the at least one second unmanned aerial vehicle is separable from the first unmanned aerial vehicle which is in flight.
Abstract:
Provided are: a dry reforming catalyst, in which a noble metal (M) is doped in a nickel yttria stabilized zirconia complex (Ni/YSZ) and an alloy (M-Ni alloy) of the noble metal (M) and nickel is formed at Ni sites on a surface of the nickel yttria stabilized zircona (YSZ); a method for producing the dry reforming catalyst using the noble metal/glucose; and a method for performing dry reforming using the catalyst. The present invention can exhibit a significantly higher dry reforming activity as compared with Ni/YSZ catalysts. Furthermore, the present invention can have an improved long-term performance by suppressing or preventing the deterioration. Furthermore, the preparing method is useful in performing the alloying of noble metal with Ni at Ni sites on the Ni/YSZ surface and can simplify the preparing process, and thus is suitable in mass production.
Abstract:
Provided are a method for preparing a Nafion membrane having a through-pore free monolithic porous structure throughout the bulk of the membrane through a one-step process very easily and a Nafion membrane having a through-pore free monolithic porous structure obtained from the method. The Nafion membrane having such a porous structure may have an increased surface area, and thus may improve the membrane/catalyst interfacial area and transport characteristics.
Abstract:
Provided is a catalyst for an oxygen reduction reaction, including an alloy in which two metals are mixed, in which the corresponding alloy is an alloy of iridium (Ir); and silicon (Si), phosphorus (P), germanium (Ge), or arsenic (As). The corresponding catalyst for the oxygen reduction reaction may have excellent price competitiveness while exhibiting a catalytic activity which is equal to or similar to that of an existing Pt catalyst. Accordingly, when the catalyst is used, the amount of platinum catalyst having low price competitiveness may be reduced, so that a production unit cost of a system to which the corresponding catalyst is applied may be lowered.
Abstract:
Provided are cardo copolybenzimidazoles, a gas separation membrane using the same and a method for preparing the same. More particularly, provided are cardo copolybenzimidazoles obtained by introducing cardo groups and aromatic ether groups to a polybenzimidazole backbone, a gas separation membrane having significantly improved oxygen permeability by using the same, and a method for preparing the same. The cardo copolybenzimidazoles have improved solubility as compared to the polybenzimidazole polymers according to the related art, show excellent mechanical properties while maintaining thermal stability so as to be formed into a film shape, and provide a gas separation membrane having significantly improved gas permeability, particularly, oxygen permeability.
Abstract:
The present disclosure discloses a catalyst for liquid phase reforming of biomass derived from hydrotalcite, a method for preparing the same, and a method for producing hydrogen using the same. The catalyst is a mixed metal oxide catalyst, the catalyst is a nickel-zinc-aluminum mixed metal oxide of a hydrotalcite structure, and the catalyst is used for liquid phase reforming of biomass. The catalyst has an effect of providing a high yield of hydrogen by improving an efficiency of the liquid phase reforming reaction of biomass.
Abstract:
A dehydrogenation reaction apparatus includes a dehydrogenation reactor having a reaction vessel that stores a chemical hydride; and a methane generator that converts carbon monoxide generated in the dehydrogenation reactor into methane.