Abstract:
The present disclosure relates to a hydrogen sensor and a method for manufacturing the same, and more particularly, to a hydrogen sensor having a vertical nanogap structure, in which a nanogap is formed below a sensor portion to bring the sensor portion and an electrode into contact with each other when the sensor portion reacts with hydrogen, so as to allow the sensor portion to expand and contract freely without resistance on a substrate, thereby improving hydrogen sensing accuracy, and it is possible to form a precise nanogap with uniformity and reproducibility at a low cost and a method for manufacturing the same.
Abstract:
Provided are a method of preparing a cannabis processed product having an increased Δ9-THC content in an efficient and economic manner, through a cyclization reaction by microwave irradiation of cannabis using various extraction solvents, and use of the processed product having an increased Δ9-THC content prepared by the method, a fraction thereof, and a single ingredient of THC, in foods, drugs, and cosmetics.
Abstract:
One embodiment of the present invention provides an optical imaging apparatus using a metamaterial including a metamaterial array sensor which includes a plurality of unit cells made of a metamaterial and is positioned adjacent to an observation object, an imaging beam providing unit which provides an imaging beam toward the metamaterial array sensor, a control beam providing unit which controls a control beam provided to the unit cell to block the imaging beam incident on the unit cell, and an imaging beam measuring unit which measures a unit cell imaging beam transmission amount passing through the unit cell by measuring an imaging beam transmission amount of the metamaterial array sensor when the imaging beam passes through the unit cell and an imaging beam transmission amount of the metamaterial array sensor when the control beam is focused on the unit cell to block the imaging beam incident on the unit cell.
Abstract:
Disclosed are herein an apparatus and method for extreme ultraviolet (EUV) spectroscope calibration. The apparatus for EUV spectroscope calibration includes an EUV generating module, an Al filter, a diffraction grating, a CCD camera, a spectrum conversion module, and a control module that compares a wavelength value corresponding to a maximum peak among peaks of the spectrum depending on the order of the EUV light converted from the spectrum conversion module with a predetermined reference wavelength value depending on an order of high-order harmonics to calculate a difference value with the closest reference wavelength value, and controls the spectrum depending on the order of the EUV light converted from the spectrum conversion module to be moved in a direction of wavelength axis by the calculated difference value. Thus, it is possible to accurately measure a wavelength of a spectrum of EUV light used in EUV exposure technology and mask inspection technology.
Abstract:
A method for forming a PN junction in graphene includes: forming a graphene layer, and forming a DNA molecule layer on a partial region of the graphene layer, the DNA molecule layer having a nucleotide sequence structure designed to provide the graphene layer with a predetermined doping property upon adsorption on the graphene layer. The DNA molecule has a nucleotide sequence structure designed for doping of graphene so that doped graphene has a specific semiconductor property. The DNA molecule is coated on the surface of the graphene layer of which the partial region is exposed by micro patterning, and thereby, PN junctions of various structures may be formed by a region coated with the DNA molecule and a non-coated region in the graphene layer.
Abstract:
Provided are an apparatus and method for calibrating an extreme ultraviolet (EUV) spectrometer in which a wavelength of a spectrum of EUV light used for EUV lithography and mask inspection technology can be measured accurately.
Abstract:
Provided is a pulse laser apparatus for generating laser light. The apparatus includes a first mirror and a second mirror which are disposed at both ends of a resonator and configured to reflect the laser light, a gain medium disposed between the first and second mirrors and configured to amplify and output light incident from an outside, an etalon configured to adjust a pulse width of the laser light, and an acousto-optic modulator disposed between the first and second mirrors and configured to form a mode-locked and Q-switched signal from the laser light, in which some of the laser light is output through either the first or second mirror to outside the resonator.
Abstract:
There are provided a fabricating method of a carbon nanotube-based field effect transistor having an improved binding force with a substrate and a carbon nanotube-based field effect transistor fabricated by the fabricating method. The method includes forming an oxide film on a substrate, forming a photoresist pattern on the oxide film, forming a metal film on the entire surface of the oxide film having the photoresist pattern, removing the photoresist by lifting off, adsorbing carbon nanotubes on the substrate from which the photoresist is removed, performing an annealing process to the substrate to which the carbon nanotubes are adsorbed, and removing the metal film. Since an adhesive strength between a substrate and carbon nanotubes increases, stability and reliability of a field effect transistor can be improved. If the field effect transistor is applied to a liquid sensor or the like, a lifespan of the sensor can be extended and reliability of a measurement result obtained by the sensor can be improved.