Abstract:
A system including a controller, an interface, and a calibration controller. The controller is configured to (i) select a set of fields, and (ii) based on the set of fields, supply control effort to first actuators in zones of a chamber. The interface is configured to receive feedback signals from sensors. The feedback signals are indicative of fields respectively of the zones. The controller is configured to adjust an amount of control effort supplied to the actuators based on the fields. The calibration controller is configured to, based on the fields, generate calibration values for each of the sensors. The calibration values for each of the sensors are indicative of field contributions corresponding respectively to the actuators.
Abstract:
A system including a controller, an interface, and a calibration controller. The controller is configured to (i) select a set of fields, and (ii) based on the set of fields, supply control effort to first actuators in zones of a chamber. The interface is configured to receive feedback signals from sensors. The feedback signals are indicative of fields respectively of the zones. The controller is configured to adjust an amount of control effort supplied to the actuators based on the fields. The calibration controller is configured to, based on the fields, generate calibration values for each of the sensors. The calibration values for each of the sensors are indicative of field contributions corresponding respectively to the actuators.
Abstract:
Computer-implemented methods of optimizing a process simulation model that predicts a result of a semiconductor device fabrication operation to process parameter values characterizing the semiconductor device fabrication operation are disclosed. The methods involve generating cost values using a computationally predicted result of the semiconductor device fabrication operation and a metrology result produced, at least in part, by performing the semiconductor device fabrication operation in a reaction chamber operating under a set of fixed process parameter values. The determination of the parameters of the process simulation model may employ pre-process profiles, via optimization of the resultant post-process profiles of the parameters against profile metrology results. Cost values for, e.g., optical scatterometry, scanning electron microscopy and transmission electron microscopy may be used to guide optimization.
Abstract:
A substrate support in a substrate processing system includes an inner portion arranged to support a substrate, an edge ring surrounding the inner portion, and a controller. The controller at least one of raises the edge ring to selectively cause the edge ring to engage the substrate and lowers the inner portion to selectively cause the edge ring to engage the substrate. The controller determines when the edge ring engages the substrate and calculates at least one characteristic of the substrate processing system based on the determination of when the edge ring engages the substrate.
Abstract:
Computer-implemented methods of optimizing a process simulation model that predicts a result of a semiconductor device fabrication operation to process parameter values characterizing the semiconductor device fabrication operation are disclosed. The methods involve generating cost values using a computationally predicted result of the semiconductor device fabrication operation and a metrology result produced, at least in part, by performing the semiconductor device fabrication operation in a reaction chamber operating under a set of fixed process parameter values. The determination of the parameters of the process simulation model may employ pre-process profiles, via optimization of the resultant post-process profiles of the parameters against profile metrology results. Cost values for, e.g., optical scatterometry, scanning electron microscopy and transmission electron microscopy may be used to guide optimization.
Abstract:
A system for controlling a condition of a wafer processing chamber is disclosed. According the principles of the present disclosure, the system includes memory and a first controller. The memory stores a plurality of profiles of respective ones of a plurality of first control elements. The plurality of first control elements are arranged throughout the chamber. The first controller determines non-uniformities in a substrate processing parameter associated with the plurality of first control elements. The substrate processing parameter is different than the condition of the chamber. The first controller adjusts at least one of the plurality of profiles based on the non-uniformities in the substrate processing parameter and a sensitivity of the substrate processing parameter to the condition.
Abstract:
A substrate support in a substrate processing system includes an inner portion arranged to support a substrate, an edge ring surrounding the inner portion, and a controller. The controller, to selectively cause the edge ring to engage the substrate and tilt the substrate, controls at least one actuator to at least one of raise and lower the edge ring and raise and lower the inner portion of the substrate support. The controller determines an alignment of a measurement device in the substrate processing system based on a signal reflected from a surface of the substrate when the substrate is tilted.