Abstract:
A head mounted display is disclosed herein. In some embodiments, a head mounted display includes a lens unit configured to be disposed in front of an eye of a wearer; an holographic optical element disposed on an eye side surface or a surface opposite the eye side surface of the lens unit; and an image display unit configured to be disposed on a lateral side of the eye of the wearer and configured to output image display light. The image display unit includes at least one of a liquid crystal display panel or an organic light emitting display panel to output the image display light toward the holographic optical element, and the holographic optical element diffracts the image display light and reflects the diffracted image display light toward the eye of the wearer.
Abstract:
The present application relates to an optical isolation device. The present application provides an optical isolation device having a high transmittance in a forward direction and an excellent isolation ratio. Such an optical isolation device can be applied to various applications such as the field of optical communication or laser optics, the field of security or privacy protection, brightness enhancement of displays, or a use for hiding and covering.
Abstract:
The present invention relates to a composition for forming a conductive pattern capable of forming a fine conductive pattern reducing degradation of mechanical physical properties and having excellent adhesion strength, on a polymeric resin product or resin layer, a method for forming a conductive pattern using the same, and a resin component having the conductive pattern. The composition for forming a conductive pattern includes: a polycarbonate-based resin; and particles of a non-conductive metal compound including a first metal and a second metal and having a spinel structure, wherein the particles have a particle diameter of 0.1 to 6 μm; wherein a metal nuclei including the first metal, the second metal, or an ion thereof is formed from the particles of the non-conductive metal compound by electromagnetic wave irradiation. The non-conductive metal compound may have an average specific surface area of about 0.5 to 10 m2/g, preferably about 0.5 to 8 m2/g, more preferably about 0.7 to about 3 m2/g.
Abstract:
The present application provides a replicating method and a replicating device of a transmission type holographic optical element capable of mass-replicating the transmission type holographic optical element by a continuous and economical process.
Abstract:
The present application relates to a sheet comprising, in a single layer, a first light control part capable of providing light always totally reflected only in a specific interlayer laminate structure among sheet constructions; and a second light control part capable of providing light whose total reflection is determined according to a fingerprint pattern in contact with the surface layer of the sheet by changing a part of the light provided from the first light control part and totally reflected in the specific interlayer laminate structure at a predetermined angle and emitting it to reach the surface layer of the sheet without being totally reflected in the specific interlayer laminate structure, and a device thereof. The sheet has excellent user identification or authentication capability through a fingerprint and can be applied to a large area display device to recognize a plurality of fingerprint patterns without being influenced by each other.
Abstract:
The present application relates to an encapsulation film, a method of manufacturing the same, an organic electronic device including the same, and a method of manufacturing the organic electronic device using the same. The present application provides an encapsulation film which can be formed to have a structure in which moisture or oxygen flowing from the outside into an organic electronic device can be effectively blocked, has excellent handling properties and processability, and also has excellent bonding properties with an organic electronic element and durability.
Abstract:
This disclosure relates to a composition for forming a conductive pattern that enables formation of fine conductive pattern on various polymer resin products or resin layers by a simplified process, and more effectively fulfills requirements of the art such as realization of various colors and the like, and a resin structure having a conductive pattern. The composition for forming a conductive pattern comprises a polymer resin; and a non-conductive metal compound including a first metal and a second metal, having a NASICON crystal structure represented by the following Chemical Formula 1, wherein a metal nucleus including the first metal or an ion thereof is formed from the non-conductive metal compound by electromagnetic irradiation.
Abstract:
The present application relates to a method of preparing a metal pattern having a 3D structure, a metal pattern laminate, and use of the metal pattern laminate. According to the method of preparing a metal pattern, the metal pattern having a 3D structure can be effectively formed on a receptor. Especially, the metal pattern having a 3D structure can also be effectively and rapidly transferred to a surface of the receptor, such as, a flexible substrate, to which the metal pattern is not easily transferred. The metal pattern laminate prepared using the method can, for example, be usefully used for metal layers of flexible electronic devices or metal interconnection lines.
Abstract:
The present invention relates to a method for manufacturing a conductive mesh pattern, a mesh electrode manufactured by the same, and a laminate.
Abstract:
The present application relates to a method for manufacturing a polarized light splitting element and a polarized light splitting element. The present application can provide: a method for manufacturing the polarized light splitting element having excellent polarized light splitting ability and light-transmission ability through a simple and efficient process; and the polarized light splitting element having the excellent polarized light splitting ability and the light transmission ability.