摘要:
The present invention relates to a P-type skutterudite thermoelectric material, a method for preparing the same, and a thermoelectric device including the same. More specifically, the present invention relates to a P-type skutterudite thermoelectric material into which a specific filler and charge compensator are introduced, and which exhibits high thermoelectric performance, a method for preparing the same, and a thermoelectric device including the same.
摘要:
The present invention relates to a composition for forming a conductive pattern which allows micro conductive patterns to be formed on various polymeric resin products or resin layers by a very simplified process, a method for forming a conductive pattern using the composition, and a resin structure having the conductive pattern. The composition for forming a conductive pattern comprises: a polymeric resin; and a nonconductive metallic compound including a first metal, a second metal and a third metal, wherein the nonconductive metallic compound has a three-dimensional structure including a plurality of first layers (edge-shared octahedral layers) having a structure in which octahedrons comprising two metals from among the first metal, the second metal and the third metal which share the edges thereof with one another are two-dimensionally connected to one other, and a second layer which includes a metal of a different type from the first layer and is arranged between adjacent first layers, and wherein a metallic core including the first metal, the second metal or the third metal or an ion thereof is formed from the nonconductive metallic compound by electromagnetic radiation.
摘要:
The present invention relates to a composition for forming a conductive pattern and a resin structure having a conductive pattern, wherein the composition makes it possible to form a fine conductive pattern on various polymer resin products or resin layers through a simple process, and can more effectively meet needs of the art, such as displaying various colors. The composition for forming a conductive pattern, comprises: a polymer resin; and a non-conductive metal compound having a predetermined chemical structure, and may be a composition for forming a conductive pattern through electromagnetic irradiation, by which a metal nucleus is formed from the non-conductive metal compound.
摘要:
The present invention relates to a composition for forming a conductive pattern capable of forming a fine conductive pattern reducing degradation of mechanical physical properties and having excellent adhesion strength, on a polymeric resin product or resin layer, a method for forming a conductive pattern using the same, and a resin component having the conductive pattern. The composition for forming a conductive pattern includes: a polycarbonate-based resin; and particles of a non-conductive metal compound including a first metal and a second metal and having a spinel structure, wherein the particles have a particle diameter of 0.1 to 6 μm; wherein a metal nuclei including the first metal, the second metal, or an ion thereof is formed from the particles of the non-conductive metal compound by electromagnetic wave irradiation. The non-conductive metal compound may have an average specific surface area of about 0.5 to 10 m2/g, preferably about 0.5 to 8 m2/g, more preferably about 0.7 to about 3 m2/g.
摘要:
Provided are a method for forming conductive pattern by direct radiation of an electromagnetic wave capable of forming fine conductive patterns on various kinds of polymer resin products or resin layers by a simplified process, and appropriately implementing the polymer resin products having white color or various colors, and the like, even without containing specific inorganic additives in the polymer resin itself, and a resin structure having the conductive pattern formed therefrom.The method for forming the conductive pattern by direct radiation of the electromagnetic wave includes: forming a first region having a predetermined surface roughness by selectively radiating the electromagnetic wave on a polymer resin substrate containing titanium dioxide (TiO2); forming a conductive seed on the polymer resin substrate; forming a metal layer by plating the polymer resin substrate having the conductive seed formed thereon; and removing the conductive seed and the metal layer from a second region of the polymer resin substrate, wherein the second region has surface roughness smaller than that of the first region.
摘要:
The present invention relates to a composition for forming a conductive pattern capable of forming a fine conductive pattern on a variety of polymer resin products or resin layers by a significantly simple process, a method for forming a conductive pattern using the same, and a resin structure having a conductive pattern. The composition for forming a conductive pattern includes: a polymer resin; and a non-conductive metal compound including at least one of first and second metals as a predetermined non-conductive metal compound including the first and second metals, wherein a metal core including the first or second metal, or an ion thereof is formed from the non-conductive metal compound by electromagnetic irradiation.
摘要:
The present invention relates to a composition for forming a conductive pattern capable of forming a fine conductive pattern reducing degradation of mechanical physical properties and having excellent adhesion strength, on a polymeric resin product or resin layer, a method for forming a conductive pattern using the same, and a resin component having the conductive pattern. The composition for forming a conductive pattern includes: a polycarbonate-based resin; and particles of a non-conductive metal compound including a first metal and a second metal and having a spinel structure, wherein the particles have a particle diameter of 0.1 to 6 μm; wherein a metal nuclei including the first metal, the second metal, or an ion thereof is formed from the particles of the non-conductive metal compound by electromagnetic wave irradiation. The non-conductive metal compound may have an average specific surface area of about 0.5 to 10 m2/g, preferably about 0.5 to 8 m2/g, more preferably about 0.7 to about 3 m2/g.