Abstract:
Disclosed herein is a battery module configured to have a structure in which a plurality of battery cells, each of which includes an electrode assembly of a cathode/separator/anode structure mounted in an electrode assembly receiving part, is mounted in a module case in a state in which the battery cells are arranged in a lateral direction such that the electrode assembly receiving parts of the respective battery cells are adjacent to one another, wherein a plurality of cooling members is disposed between the battery cells, and each of the cooling members includes a heat dissipation fin disposed between adjacent electrode assembly receiving parts in a tight contact state and a coolant conduit configured to have a hollow structure in which a coolant flows and mounted to the heat dissipation fin along outer edges of each of the electrode assembly receiving parts.
Abstract:
Disclosed herein is a battery module including (a) a battery cell stack including two or more battery cells or unit modules electrically connected to each other in a state in which the battery cells or unit modules are vertically stacked, (b) a first housing to cover the entirety of the end of one side of the battery cell stack and portions of the top and bottom of the battery cell stack and (c) a second housing to cover the entirety of the end of the other side of the battery cell stack and the remainder of the top and bottom of the battery cell stack, wherein the first housing and the second housing are provided with coupling holes formed to couple the first housing and the second housing to each other, the coupling holes being horizontal coupling holes, through which coupling members can be inserted in the lateral direction.
Abstract:
The present application provides a method for manufacturing a metal alloy foam. The present application can provide a method for manufacturing a metal alloy foam, which is capable of forming a metal alloy foam comprising uniformly formed pores and having excellent mechanical properties as well as the desired porosity, and a metal alloy foam having the above characteristics. In addition, the present application can provide a method capable of forming a metal alloy foam in which the above-mentioned physical properties are ensured, while being in the form of a thin film or sheet, within a fast process time, and such a metal alloy foam.
Abstract:
The present application provides a composite material and a method for producing the same. The present application can provide a composite material having excellent other necessary properties such as impact resistance or processability, as well as excellent heat conduction characteristics as a tight heat transfer network is formed therein by an anisotropic heat-conductive filler.
Abstract:
The present application provides a method for manufacturing a metal foam. The present application can provide a method for manufacturing a metal foam, which is capable of forming a metal foam comprising uniformly formed pores and having excellent mechanical properties as well as the desired porosity, and a metal foam having the above characteristics. In addition, the present application can provide a method capable of forming a metal foam in which the above-mentioned physical properties are ensured, while being in the form of a thin film or sheet, within a fast process time, and such a metal foam.
Abstract:
Disclosed herein is a battery module having a plurality of battery cells electrically connected to each other, the battery module including a voltage sensing unit including voltage sensing terminals electrically connected to electrode terminal connection portions of the battery cells and a conduction part connected to the voltage sensing terminals to transmit voltages detected by the voltage sensing terminals to a module control unit and a signal cutoff unit located between the voltage sensing terminals and the conduction part to interrupt transmission of the detected voltages when a short circuit occurs in the conduction part.
Abstract:
Disclosed herein is a battery pack configured such that battery modules, each of which includes a plurality of battery cells or unit modules connected to each other in series, are connected to each other in series in a state in which the battery modules are in tight contact with each other or stacked adjacent to each other, the battery pack including a fuse connected in series in an electrical connection circuit between the battery modules and a circuit breaker mounted at an outside of at least one of the battery modules to perform electric conduction when the battery cells swell, the circuit breaker being electrically connected to the electrical connection circuit to break the fuse when electric conduction is performed due to swelling of the battery cells.
Abstract:
Disclosed herein is a middle or large-sized battery module having secondary batteries or unit modules, each of which has two or more secondary batteries mounted therein, stacked in a state in which the secondary batteries or the unit modules are erected vertically, the battery module including a base plate on which the secondary batteries or the unit modules are stacked in a vertically erected state, a pair of end plates disposed in tight contact with outer sides of the outermost unit modules or the outermost unit modules in a state in which the bottom of each of the end plates is fixed to the base plate, and supporting bars connected between opposite sides of upper parts or side parts of the end plates so as to interconnect and support the end plates, wherein the base plate is provided at opposite sides thereof with a pair of upward protrusions extending in a longitudinal direction of the base plate to prevent the base plate from being deformed due to vertical vibration and to disperse pressure (load), and opposite sides of the bottom of each of the unit modules are disposed at the top of the upward protrusions.
Abstract:
Disclosed herein is a safety device mounted at one side of a battery pack including two or more battery cells or at least one battery module such that the safety device is first short-circuited when a needle type object penetrates the battery pack to secure safety of the battery pack, the safety device including a pair of conductive sheets spaced apart from each other, an electrically insulative housing to surround outsides of the conductive sheets excluding fronts of the conductive sheets in a state in which the conductive sheets are inserted and mounted in the housing, a sealing member to cover the fronts of the conductive sheets, and a connection member to connect the conductive sheets to a cathode and an anode of one of battery cells constituting the battery module.
Abstract:
Disclosed herein is a battery pack including a bracket coupled between at least one side supporting member and a rear mounting member to distribute load of battery modules to a rear mounting member via the at least one side supporting member, thereby effectively supporting vibration of the battery pack in a forward and backward direction and load of the battery pack.