Abstract:
A method for measuring, by a terminal, the location of a terminal in a wireless network according to the present invention includes the steps of: determining based on a received signal whether the number of access points (APs) that transmit the signal is three or more; storing location information on a first AP obtained based on the received signal and distance information between the terminal and the first AP at a point receiving the signal if the number of the APs is less than three; measuring a travel distance and a travel direction according to the movement of the terminal from the point receiving the signal; obtaining, based on the signals received from a second and a third AP, location information on the second and third APs and distance information between the terminal and each of the second and third APs at the current point, if it is determined that the number of the APs that transmit signals from the current point according to the movement to the terminal is three or more; and calculating the location of the current point of the terminal based on the distance information between the terminal and each of the second and third APs at the current point, distance information between the terminal and the first AP, and the measured travel distance and the measured travel direction.
Abstract:
The method comprises: a step in which the base station transmits to a terminal configuration information related to the beam restricted sub-frame; and a step in which the base station transmits downlink data to the terminal via a sub-frame. The sub-frame includes the beam restricted sub-frame and a normal sub-frame, setting information includes information indicating a sub-frame set as the beam restricted sub-frame among multiple sub-frames, the beam restricted sub-frame is a sub-frame transmitted only based on a first beam subset, the normal sub-frame is a sub-frame transmitted based on the first beam subset and a second beam subset, the first beam subset is the set of beams generated based on a first precoding matrix set, and the second beam subset is the set of beams generated based on a second precoding matrix set including the first precoding matrix set.
Abstract:
The present invention discloses a method and an apparatus for reporting channel state information. According to one embodiment of the present invention, receiving a channel state information-reference signal (CSI-RS) based on CSI-RS setting information that is provided by a base station; and reporting to the base station the CSI generated by using the CSI-RS, wherein the CSI includes precoding information selected from a specific codebook, wherein elements of the specific codebook are configured based on a precoding vector W, wherein the precoding vector W is W = [ W 1 aW 2 ] , W1 is a precoding vector applied to a first domain antenna group having a 2D antenna structure, W2 is a precoding vector applied to a second domain antenna group having the 2D antenna structure, and wherein “a” can be a value representing phase difference between the first domain antenna group and the second domain antenna group.
Abstract translation:本发明公开了一种用于报告信道状态信息的方法和装置。 根据本发明的一个实施例,基于由基站提供的CSI-RS设置信息来接收信道状态信息参考信号(CSI-RS); 以及向所述基站报告通过使用所述CSI-RS生成的所述CSI,其中,所述CSI包括从特定码本中选择的预编码信息,其中,所述特定码本的元素基于预编码向量W配置,其中,所述预编码矢量W为W = W W2,W1是应用于具有2D天线结构的第一域天线组的预编码矢量,W2是应用于具有2D天线结构的第二域天线组的预编码矢量,其中 “a”可以是表示第一域天线组和第二域天线组之间的相位差的值。
Abstract:
The present specification provides a method for generating a beam of an antenna in a wireless communication system supporting a THz band. More particularly, the method comprises the steps of: generating the direction of a first beam by applying a specific configuration set to antenna elements in an antenna group on the basis of pre-configured information, wherein the pre-configured information includes one or more configuration sets consisting of configuration values respectively applied to the antenna elements in the antenna group in order to control the direction of the first beam; and generating the direction of a second beam by controlling the phase between antenna groups.
Abstract:
A multiple distributed system is disclosed. An uplink control resource allocation method for a user equipment to transmit an Acknowledgement/Negative ACK (ACK/NACK) signal includes receiving one or more Enhanced-Physical Downlink Control Channels (E-PDCCHs), receiving one or more Physical Downlink Shared Channels (PDSCHs) corresponding to the one or more E-PDCCHs, and transmitting ACK/NACK signals for reception of the one or more PDSCHs through a Physical Uplink Control Channel (PUCCH), wherein Control Channel Element (CCE) indexes of the PUCCH transmitting the ACK/NACK signals are determined in consideration of first CCE indexes of the one or more E-PDCCHs and the number of CCEs of a PUCCH determined by a higher layer.
Abstract:
A multiple distributed system is disclosed. An uplink control resource allocation method for a user equipment to transmit an Acknowledgement/Negative ACK (ACK/NACK) signal includes receiving one or more Enhanced-Physical Downlink Control Channels (E-PDCCHs), receiving one or more Physical Downlink Shared Channels (PDSCHs) corresponding to the one or more E-PDCCHs, and transmitting ACK/NACK signals for reception of the one or more PDSCHs through a Physical Uplink Control Channel (PUCCH), wherein Control Channel Element (CCE) indexes of the PUCCH transmitting the ACK/NACK signals are determined in consideration of first CCE indexes of the one or more E-PDCCHs and the number of CCEs of a PUCCH determined by a higher layer.
Abstract:
A method and apparatus for transmitting a signal from a base station to a first user equipment (UE) in a multiple-input multiple-output (MIMO) wireless communication system. Information on a movement speed of a second UE is acquired from the second UE. Channel information is determined based on the information on the movement speed. The channel information is previously measured by the first UE. A transmission and reception scheme is determined based on the determined channel information. At least one of the determined channel information or the determined transmission and reception scheme is transmitted to the second UE.
Abstract:
A method of reporting a channel state from a user equipment in a wireless communication system and apparatus therefor are disclosed. The present invention includes receiving information on vertical beamforming angles of a serving node and a cooperation node from the serving node, generating the channel state information for a cooperative transmission mode using the information on the vertical beamforming angle, and reporting the channel state information to the serving node.
Abstract:
An apparatus and method for performing UE-to-UE cooperative communication in a wireless communication system are disclosed, by which implementation of a UE cooperative communication using a cellular network is facilitated. The present invention includes activating an application to perform the UE-to-UE cooperative communication, receiving first data via a first network from a base station recognizing that the application has been activated, receiving second data via a second network from a cooperative user equipment linked for the UE-to-UE cooperative communication, and performing a service by adding the first data and the second data together through the application, wherein the first network and the second network correspond to heterogeneous networks, respectively.
Abstract:
In a wireless communication system, when a terminal receives control information from a downlink subframe, which is divided into a Physical Downlink Control Channel (PDCCH) region and a Physical Downlink Shared Channel (PDSCH) region, in a wireless communication system, the receiving of the control information includes: receiving, from a base station, first CFI information indicating the number of Orthogonal Frequency Division Multiplexing (OFDM) symbols available for Physical Downlink Control Channel (PDCCH) transmission; receiving, from the base station, second CFI information indicating start OFDM symbol information available for Physical Downlink Shared Channel (PDSCH) transmission corresponding to an enhanced Physical Downlink Control Channel (E-PDCCH); and receiving the PDSCH from the base station on the basis of the first CFI information or the second CFI information. The PDCCH is placed in the PDCCH region of the downlink subframe, and the E-PDCCH is placed in the PDSCH region of the downlink subframe.