Abstract:
Provided is an electrode substrate, including: a substrate; a first pattern unit on the substrate; and a second pattern unit on the substrate.
Abstract:
Provided is a nanowire manufacturing substrate, comprising a grid base layer on a substrate and a grid pattern formed by patterning the grid base layer, the grid pattern being disposed to produce a nanowire on a surface thereof. According to the present invention, the width and height of the nanowire can be adjusted by controlling the wet-etching process time period, and the nanowire can be manufactured at a room temperature at low cost, the nanowire can be mass-manufactured and the nanowire with regularity can be manufactured even in case of mass production.
Abstract:
Disclosed is a touch window including a substrate, and an electrode layer on the substrate. A retardation difference is 0.2% or less depending on an incident angle of light in the substrate.
Abstract:
A touch window includes a substrate, and an electrode part provided on the substrate. The electrode part includes a first sub-pattern, an electrode layer provided in the first sub-pattern, a second sub-pattern adjacent to the first sub-pattern, and a third sub-pattern provided on a top surface of the first sub-pattern.
Abstract:
Provided are a transparent substrate having a nano pattern, and a method of manufacturing the same, which enables the nano pattern to be easily formed on the transparent substrate and has the nano pattern applicable to a large sized substrate by forming a resin layer made of transparent material on a transparent substrate; forming at least one or more unit pattern parts composed of a first pattern area and a second pattern area in which a plurality of grid patterns are formed, and a protrusion pattern formed between the first pattern area and the second pattern area, on the resin layer; and forming a nanoscale metal layer on the protrusion pattern.
Abstract:
A light path control member according to an embodiment comprises: a first substrate; a first electrode disposed on the first substrate; a second substrate disposed on the first substrate; a second electrode disposed under the second substrate; and a light conversion part disposed between the first electrode and the second electrode, wherein: the light conversion part includes a plurality of partition wall portions and a plurality of receiving portions which are alternately arranged; a light conversion material comprising a dispersion and multiple light conversion particles dispersed in the dispersion is disposed in the receiving portions; and the dispersion comprises a material having a carbon number of 2 to 13.
Abstract:
A heat conversion device according to an embodiment of the present invention comprises: a plurality of P-type thermoelectric legs and a plurality of N-type thermoelectric legs which are electrically connected and arranged in an array; an insulating part disposed on one surface of the plurality of P-type thermoelectric legs and the plurality of N-type thermoelectric legs; a heat sink disposed on the insulating part; a fan disposed spaced a predetermined distance from the heat sink; and a plurality of fastening members having moduli of elasticity of 1*103 kgf/cm2 to 30*103 kgf/cm2 and fixing the heat sink and the fan. Each one of the fastening members comprises: a shaft part; a first fixed part which is disposed at one end of the shaft part and fixed to the heat sink; a second fixed part which protrudes from an outer circumferential surface of the shaft part and is fixed to the fan; and a separating part which protrudes from the outer circumferential surface of the shaft part and is disposed between the heat sink and the fan to separate the heat sink and the fan, wherein the width of the second fixed part increases toward the first fixed part, and the shaft part, the first fixed part, the second fixed part, and the separating part are integrally formed.
Abstract:
A touch window includes a substrate, and an electrode part provided on the substrate. The electrode part includes a first sub-pattern, an electrode layer provided in the first sub-pattern, a second sub-pattern adjacent to the first sub-pattern, and a third sub-pattern provided on a top surface of the first sub-pattern.