摘要:
A multi-station deposition apparatus capable of simultaneous processing multiple substrates using a plurality of stations, where a gas curtain separates the stations. The apparatus further comprises a multi-station platen that supports a plurality of wafers and rotates the wafers into specific deposition positions at which deposition gases are supplied to the wafers. The deposition gases may be supplied to the wafer through single zone or multi-zone gas dispensing nozzles.
摘要:
A faceplate for a showerhead of a semiconductor wafer processing system having a plurality of gas passageways to provide a plurality of gases to the process region without commingling those gases before they reach the process region within a reaction chamber. The showerhead contains faceplate and a gas distribution manifold assembly. The faceplate defines a plurality of first gas holes that carry a first gas from the manifold assembly through the faceplate to the process region and a plurality of channels that couple a plurality of second gas holes to a plenum that is fed the second gas from the manifold assembly.
摘要:
A substrate processing apparatus comprising a housing defining a processing chamber for receiving a substrate therein. Inside the chamber a substrate supporting susceptor, including an upper substrate receiving portion is located. The receiving portion defines a walled pocket dimensioned to receive the substrate therein. When the substrate is so received the walls of the pocket define an annulus with the outer edge of the substrate. Typically the pocket walls are perpendicular to a primary plane of the substrate and are at least as high, and preferably twice as high, as the substrate is thick. At the outer, circumferential edge of the pocket a gas manifold is formed. The manifold is arranged so that, during processing, a gas which can be projected toward the edge of a substrate received in the pocket. This gas moves upwards between the annulus defined between the wall of the pocket and the outer edge of the substrate, thereby preventing processing gas from contacting the edge portion of the substrate.
摘要:
A bottom purge manifold for the gas purge channel of a CVD semiconductor processing chamber provides an obstruction in the purge gas flow from a purge gas passage to the central portion of the processing chamber. The gas flow is restricted by a ring having generally equally spaced holes therethrough obstructing the purge channel opening and retained in the channel by spring loaded retaining flanges. A set of fan-shaped slots carry the purge gas from the openings and direct it towards the center portion of the processing chamber. This manifold produces a generally uniform flow from the gas purge manifold to improve the uniformity of vapor deposition on the wafer's surface.
摘要:
An apparatus is disclosed for removing one or more materials deposited on the backside and end edges of a semiconductor wafer which includes means for urging the front side of the wafer against a faceplate in a vacuum chamber; means for flowing one or more gases through a space maintained between the front side of the wafer and the faceplate; and means for forming a plasma in a gap maintained between the backside of the wafer and susceptor to remove materials deposited on the backside and end edge of the wafer; the gas flowing through the space between the front side of the wafer and the faceplate acting to prevent the plasma from removing materials on the front side of the wafer. In a preferred embodiment, the front side of the wafer is spaced from the faceplate by providing a generally circular recess in the faceplate having a depth corresponding to the desired spacing and having a diameter larger than the diameter of the wafer with spacing means in the recessed area to engage portions of the wafer to permit gas to flow through the recess and around the end edge of the wafer to inhibit removal of materials from the front surface of the wafer by the plasma.
摘要:
A multi-station deposition apparatus capable of simultaneous processing multiple substrates using a plurality of stations, where a gas curtain separates the stations. The apparatus further comprises a multi-station platen that supports a plurality of wafers and rotates the wafers into specific deposition positions at which deposition gases are supplied to the wafers. The deposition gases may be supplied to the wafer through single zone or multi-zone gas dispensing nozzles.
摘要:
A method and apparatus are provided for measuring the thickness of a test object. The apparatus includes an eddy current sensor having first and second sensor heads. The sensor heads are positioned to have a predetermined gap therebetween for passage by at least a portion of the test object through the gap. The sensor heads make measurements at given sampling locations on the test object as the test object is moved through the gap. The apparatus also includes a position sensing mechanism to determine positions of the sampling locations on the test object. The apparatus also includes an evaluation circuit in communication with the eddy current sensor and to the position sensing mechanism for determining the thickness of the test object at the sampling locations.
摘要:
A multi-station deposition apparatus capable of simultaneous processing multiple substrates using a plurality of stations, where a gas curtain separates the stations. The apparatus further comprises a multi-station platen that supports a plurality of wafers and rotates the wafers into specific deposition positions at which deposition gases are supplied to the wafers. The deposition gases may be supplied to the wafer through single zone or multi-zone gas dispensing nozzles.
摘要:
A multi-station deposition apparatus capable of simultaneous processing multiple substrates using a plurality of stations, where a gas curtain separates the stations. The apparatus further comprises a multi-station platen that supports a plurality of wafers and rotates the wafers into specific deposition positions at which deposition gases are supplied to the wafers. The deposition gases may be supplied to the wafer through single zone or multi-zone gas dispensing nozzles.
摘要:
A substrate support having a removable edge ring, which is made of a material having a lower coefficient of thermal expansion (CTE), than that of the substrate support is provided. The edge ring and the substrate support are configured for pin and slot coupling. Specifically, either the edge ring, or the substrate support comprises a plurality of pins, and the other of the edge ring or the substrate support comprises a plurality of hollow regions or slots in which the pins may be inserted. The slots are at least as wide as a corresponding one of the plurality of pins and extend in the direction in which the substrate support expands and contracts during thermal cycling. Each of the slots extends a length which is sufficient to compensate for the difference between the CTE of the substrate support and the CTE of the edge ring, over the range of process temperatures to which the apparatus is exposed. Preferably the susceptor is made of aluminum, and the edge ring is made of ceramic. A restrictor gap may be defined between a surface of the substrate support and a surface of the purge ring so as to restrict a volume of purge gas flowing to an edge of a substrate positioned on the substrate support. The purge gas delivery channel may have an exposed outlet and may be upwardly angled to facilitate cleaning.