Abstract:
Various examples and schemes pertaining to differentiation of user equipment (UE) in narrowband IoT (NB-IoT) are described. A processor of a UE generates a signal containing UE-specific information that is specific to the UE. The processor transmits the signal to a network node of a wireless network. The processor then receives a response from the network node, the response comprising an access stratum (AS) configuration created by the network node based on the UE-specific information. The processor also applies the AS configuration which reduces power consumption of the UE.
Abstract:
Concepts and examples pertaining to efficient coding switching and modem resource utilization in wireless communication systems are described. A processor of a modem of a user equipment (UE), configured with at least a first-capacity decoder and at least a second-capacity decoder, receives a common virtual carrier (CVC), a dedicated virtual carrier (DVC), or both. The CVC contains common information shared by multiple UEs, control information for the UE, and/or data information related to first data destined for the UE. The DVC contains control information for the UE, the first data, or a combination thereof. The first-capacity decoder decodes data of a small size up to a low data rate. The second-capacity decoder decodes data of a large size up to a high data rate. The processor determines whether to decode the first data using the first-capacity decoder or the second-capacity decoder based on the data information in the CVC.
Abstract:
A method of inter-RAT failure event report is proposed. A UE detects a failure event in a first cell served by a first base station, and the first cell belongs to a first RAT. The failure event may include a radio link failure or a handover failure. The UE then performs an RRC establishment procedure with a second cell served by a second base station, and the second cell belongs to a second RAT. After the RRC establishment, the UE transmits a failure event report to the wireless network. The failure event can be a radio link failure, or be associated with a mobility command such as a handover command. By providing more reliable information in the failure event report than a network solution could provide, inter-RAT mobility performance can be improved.
Abstract:
A method of failure event reporting for initial connection setup failure is proposed. In one embodiment, a UE first camps in RRC_IDLE mode in a cell served by a base station. The UE then detects a connection setup failure when performing a random access channel (RACH) procedure with the base station in an RRC connection attempt. The UE records a failure event report when the RACH procedure fails. Later, the UE transmits the failure event report to the network in RRC_CONNECTED mode. The failure event report comprises information that refers to the earlier RRC connection attempt. The failure event report also comprises available location information or available mobility measurements at the time the initial connection setup failure occurs. Based on the failure event report, the network can adopt corrective actions accordingly to mitigate the failure.
Abstract:
A method of network-based positioning using sounding reference signal (SRS) is proposed. An eNodeB configures a number of parameters of a periodic SRS transmission for a user equipment (UE). The eNodeB then transmits SRS configuration data for SRS measurements performed by a location measurement unit (LMU). The SRS configuration data includes cell-specific SRS bandwidth configuration and UE-specific SRS bandwidth configuration. The SRS configuration data may further include a number of antenna ports for SRS transmission, SRS frequency hopping bandwidth configuration, information on whether SRS sequence-group hopping is enabled, and ΔSS when SRS sequence hopping is enabled. Upon receiving the SRS configuration data, the LMU is able to perform timing measurements over the received SRS signals from the UE. In one embodiment, the LMU detects SRS dropping to avoid performance degradation of the network-based positioning.
Abstract:
Methods for UE measurement enhancement in an adaptive TDD configuration network are proposed. In a first solution, the network provides an adaptive TDD indicator to the UE. In a second solution, the network provides an instantaneous TDD configuration to the UE. In a third solution, multiple TDD configurations are grouped as one TDD group, and the network adapts TDD configurations within the same TDD group. In a fourth solution, the network broadcasts a TDD reference configuration in SIB1, and adapts to another TDD configuration with DL super set constraint, i.e., the DL subframes of the other TDD configuration form a super set of the DL subframes of the broadcasted TDD reference configuration.
Abstract:
Various examples and schemes pertaining machine-to-machine (M2M) semi-persistent scheduling (SPS) in wireless communications are described. A user equipment (UE) receives a control signal from a network node of a wireless network. The UE applies, based on the control signal, an SPS configuration such that the UE enters one of one or more low-power modes between two adjacent SPS occasions.
Abstract:
Various examples and schemes pertaining to conditional radio resource control (RRC) confirm messaging are described. A user equipment (UE) communicates with a network node of a wireless network. In communicating with the network node, the UE transmits a first message to the network node and receives a second message from the network node responsive to the transmitting of the first message. The UE also determines whether to transmit a third message to the network node acknowledging receipt of the second message. That is, transmission of the third message as a confirmation of receipt of the second message is conditional or otherwise optional so as to reduce signaling overhead.
Abstract:
A method of DRX operation enhancement in adaptive TDD systems is proposed. A UE configures and enters DRX operation in an LTE/LTE-A mobile communication network. The UE obtains adaptive TDD configuration information from a base station. The adaptive TDD configuration information comprises an actual TDD configuration and a reference TDD configuration. The UE performs DRX timer counting and HARQ timer counting based on the reference TDD configuration. The UE also synchronizes DRX status with the base station. With the reference TDD configuration, it can avoid the potential misunderstanding between eNB and UE regarding DRX and HARQ RTT timing when TDD configuration changes.
Abstract:
Systems and Methods for supporting carrier aggregation with different TDD configurations are proposed. In a first novel aspect, corresponding apparatus structure is described. In a second novel aspect, aggregation constraint is discussed. In a third novel aspect, transceiving mechanisms over multiple component carriers in DL/UL overlapped subframes are proposed. For simultaneous DL/UL transceiving, band combination indication methods are proposed, and HARQ feedback mechanisms are proposed. For non-simultaneous DL/UL transceiving, transceiving configuration methods are proposed, and the same HARQ feedback mechanisms are proposed. In a fourth novel aspect, CQI/RLM/RRM measurement mechanisms are proposed. In a fifth novel aspect, UE capability signaling mechanisms are proposed. The objective is to support flexible aggregation, to enhance DL data throughout, and to improve UL transmit power efficiency.