Abstract:
Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue. In one example, a temperature sensor may sense a temperature of a portion of a device, wherein the portion is non-thermally coupled to the temperature sensor. A processor may then control charging of the rechargeable power source based on the sensed temperature.
Abstract:
An example system includes a stimulation generator configured to deliver electrical stimulation therapy to tissue of a patient in accordance with a stimulation therapy program. The stimulation therapy program may include a set of stimulation therapy parameters. The system may include at least one sensor configured to detect a signal including an evoked compound muscle action potential (eCMAP) in response to the application of stimulation according to the stimulation therapy program. The system may also include a processor configured to adjust one or more or the stimulation therapy parameters based on the detected signal that includes the eCMAP.
Abstract:
This disclosure describes techniques for controlling spectral aggressors in a sensing device that uses a low power sleep mode to manage the power consumed by the device. In some examples, the techniques for controlling spectral aggressors may include configuring one or more of an algorithm processing rate for a processor, a buffering rate for the processor, a sampling rate for an analog-to-digital converter, an execution unit processing rate for the processor, and an algorithm subdivision factor for the processor such that spectral interference caused by a sleep cycle rate of the processor occurs outside of one or more target frequency bands of a sampled signal. The techniques of this disclosure may be used to reduce noise in a sensing system that uses a low power sleep mode to manage the power consumed by the device.
Abstract:
Described herein is a device configured to be implanted into a live human or animal. The device includes an electrically non-conductive frame; one or more electrical components disposed in the electrically non-conductive frame; and a self-supporting film. The self-supporting film forms a hermetical seal with the electrically non-conductive frame. The self-supporting film and the frame enclose the electrical components. The device is configured to be implanted into a live human or animal. Also described herein is a method of making a device configured to be implanted into a live human or animal. The method includes providing an electrically non-conductive frame comprising one or more feedthroughs, openings and a cavity; disposing electrical components within the cavity; optionally filling the cavity with a material to embed the electrical components in the material; and sealing the openings by applying a self-supporting film to the one or more openings.
Abstract:
Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue. In one example, a temperature sensor may sense a temperature of a portion of a device, wherein the portion is non-thermally coupled to the temperature sensor. A processor may then control charging of the rechargeable power source based on the sensed temperature.
Abstract:
Devices and methods provide for the sensing of physiological signals during stimulation therapy by preventing stimulation waveform artifacts from being passed through to the amplification of the sensed physiological signal. Thus, the amplifiers are not adversely affected by the stimulation waveform and can provide for successful sensing of physiological signals between stimulation waveform pulses. A blanking switch may be used to blank the stimulation waveform artifacts where the blanking switch is operated in a manner synchronized with the stimulation waveform so that conduction in the sensing path is blocked during the stimulation pulse as well as during other troublesome artifacts such as a peak of a recharge pulse. A limiter may be used to limit the amplitude of the sensed signal, and hence the stimulation artifacts, that are passed to the amplifier without any synchronization of the limiter to the stimulation waveform.
Abstract:
In some examples, the disclosure relates to a medical device comprising a lead including an electrically conductive lead wire; and an electrode electrically coupled to the lead wire, the electrode including a substrate and a coating on an outer surface of the substrate, wherein the lead wire is formed of a composition comprising titanium or titanium alloys, wherein the substrate is formed of a composition comprising one or more of titanium, tantalum, niobium, and alloys thereof, wherein the coating comprises at least one of Pt, TiN, IrOx, and poly(dioctyl-bithiophene) (PDOT). In some examples, the lead wire may be coupled to the lead wire via a weld, such as, e.g., a laser weld.
Abstract:
Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue. In one example, a temperature sensor may sense a temperature of a portion of a device, wherein the portion is non-thermally coupled to the temperature sensor. A processor may then control charging of the rechargeable power source based on the sensed temperature.
Abstract:
This disclosure relates to methods, devices, and systems for delivering and adjusting stimulation therapy. In one example, a system may include a stimulation generator configured to delivery electrical stimulation therapy to tissue of a patient in accordance with a stimulation therapy program. The stimulation therapy program may include a set of stimulation therapy parameters. The system may include at least one sensor configured to detect a signal including an evoked compound muscle action potential (eCMAP) in response to the application of stimulation according to the stimulation therapy program. The system may also include a processor configured to adjust one or more or the stimulation therapy parameters based on the detected signal that includes the eCMAP.
Abstract:
In an example, an electrical circuit device for amplifying a physiological signal includes a modulation unit configured to receive an input signal, to modulate the input signal to produce a modulated signal. The device also includes an amplification and transconductance unit configured to amplify an amplitude of the modulated signal and increase a transconductance of the modulated signal to produce a transconductance enhanced modulated and amplified signal, where the amplification and transconductance unit comprises at least a first complementary pair of transistors and a second complementary pair of transistors configured to receive the modulated signal and to amplify and increase the transconductance of the modulated signal. The device also includes a demodulation unit configured to receive the transconductance enhanced modulated and amplified signal and to demodulate the signal.