摘要:
A static random access memory (SRAM) cell having increased cell capacitance at the storage nodes utilizes a capacitive structure. The capacitive structure includes a dielectric material between polysilicon conductive lines and tungsten local interconnects. The polysilicon plates are each connected to drains of lateral transistors associated with the SRAM cell. A dielectric material such as silicon dioxide may be deposited between the local interconnect and polysilicon conductive lines. The capacitor structures are provided between first and second N-channel pull down transistors associated with the SRAM cell.
摘要:
A memory device uses a reduced word line voltage during READ operations. The memory device includes a memory cell and a pass transistor for accessing the cell. The cell includes a storage node coupled to a pull-down transistor having substantially the same conductivity as the pass transistor. A drive circuit generates a reduced word line voltage to activate the pass transistor during a READ operation. The reduced word line voltage has a magnitude less than the magnitude of the bias voltage used to activate the pull-down transistor.
摘要:
A multilayer semiconductor structure includes a conductive via. The conductive via includes a pellet of metal having a high resistance to electromigration. The pellet is made from a conformal layer of copper or gold deposited over the via to form a copper or gold reservoir or contact located in the via. A barrier layer is provided between the reservoir and an insulating layer to prevent the pellet from diffusing into the insulating layer. The pellet can be formed by selective deposition or by etching a conformal layer. The conformal layer can be deposited by sputtering, collimated sputtering, chemical vapor deposition (CVD), dipping, evaporating, or by other means. The barrier layer and pellet may be etched by anisotropic dry etching, plasma-assisted etching, or other layer removal techniques.
摘要:
A method of fabricating semiconductor devices which eliminates the need to use additional window mask process to expose topographical marks, such as alignment targets, on a wafer when chemical-mechanical polish planarization technique are used to substantially planarize the surface of the wafer prior to metal deposition. The method comprises (a) depositing a first removable layer on the wafer; (b) removing a portion of the first removable layer to form a large window around the first topographical mark and to retain an area of the first removable layer around the window; (c) forming an island of material within the: window and over the first topographical mark, wherein the island having a top surface of a second topographical mark replicating the first topographical mark; (d) depositing a second removable layer over the wafer including over the area and the island; (e) chemical-mechanical polishing the second removable layer to substantially planarize the second removable layer; and (f) removing the second removable layer deposited over the area and the island to expose the second topographical mark. The outer dimension of the window is large enough so that the upper surface of the second topographical mark and the upper surface of the material located in the remaining area on the wafer are of approximately equal spacing from the substantially planarized second removable layer. Accordingly, additional window mask process can be eliminated because one etch process, such as a contact etch, will be sufficient to expose the second topographical mark.
摘要:
An integrated test circuit for a silicon on insulator circuit structure is formed on the same wafer as the circuit structure. The wafer includes an input circuit coupled to the silicon on insulator circuit structure which generates a drive signal for operating the silicon on insulator circuit structure and an output circuit which processes a response signal from the circuit structure to generate an output signal representing certain characteristics of the silicon on insulator circuit structure.
摘要:
A method of forming field isolation in a semiconductor substrate, such as shallow oxide trenches, for isolation of FET transistors, including complementary FETs such as CMOS, with selected sections of said trenches extending above the substrate and being coplanar with the upper surface of subsequently formed polysilicon gates. An etch protective layer is used during the formation and the filling of the trench openings so that the top of the trenches are coplanar with upper surface of the etch protective layer. Selected sections of the trenches are masked and protected prior to planarization of the non-masked trenches to the bottom edge of the etch protective layer. After deposition and planarization of the poly, the upper surface of a deposited polysilicon layer for forming polysilicon gates of FET transistors is coplanar and self-aligned with the upwardly extending selected sections of the field isolation trenches.
摘要:
A multilayer semiconductor structure includes a conductive via. The conductive via includes a reservoir of metal having a high resistance to electromigration. The reservoir is made from a conformal layer of copper, or gold deposited over the via to form a copper, or gold plug located in the via. A barrier layer is provided between the reservoir and an insulating layer to prevent the reservoir from diffusing into the insulating layer. The barrier layer and reservoir may be deposited by sputtering, collimated sputtering, chemical vapor deposition (CVD), dipping, evaporating, or by other means. The barrier layer and reservoir may be etched by anisotropic dry etching, plasma-assisted etching, or other layer removal techniques.
摘要:
A reduced area butting contact structure (10') is provided, which is especially suited for four-transistor static RAM cells. A structure is formed which includes a doped silicon region and one or more layers of polysilicon and oxide situated thereabove, one of which layers of polysilicon may be a gate polysilicon. An anisotropic etch is then performed through all upper layers including any upper polysilicon layers which may be present, but stopping at the doped silicon region and any gate polysilicon layers present, to form a contact hole (26'). The contact hole is filled with a conductive plug (32) of a material such as tungsten or polysilicon and etched back. In either case, contact with all polysilicon layers present and the doped silicon region is made. In the anisotropic etching process, a two-step etch is employed. The first etch is non-specific as to material, etching all relevant materials (polysilicon and oxide) at substantially the same rate and is continued through any upper polysilicon layers, but is terminated prior to etching the doped silicon region or any gate polysilicon layers (22). The second etch is specific as to material, etching silicon dioxide faster than polysilicon or silicon, and thus stops at the gate polysilicon layer and the doped silicon region.
摘要:
A method for fabricating a field effect transistor (FET) in and on a semiconductor substrate with local interconnects to permit the formation of minimal insulating space between polysilicon gate and the local interconnects by fabricating the source and drain of the FET and the local interconnects prior to forming the gate of the FET. A portion of an insulating layer between the source and drain is removed prior to forming the gate. Preferably, an etch stop layer on the semiconductor substrate underlying the insulating layer is used in the method.
摘要:
A method and the resulting device to permit the formation of minimal insulating space between polysilicon gates by forming an insulating layer over the polysilicon gates and protecting selected ones of the gates and the insulating layer with an etch barrier so that the opening for local interconnect metallization can be misaligned and the selected gates will be protected by its etch barrier and not be exposed to the opening. Further, local interconnect conductive material can pass over a gate or unrelated resistor without shorting the gate/resistor.