摘要:
An integrated device comprising a MOS transistor and a Schottky diode which are formed on a semiconductor substrate of a first conductivity type is shown. The device comprises a plurality of body region stripes of a second conductivity type which are adjacent and parallel to each other, a first metal layer placed over said substrate and a second metal layer placed under said substrate. The device comprises a plurality of elementary structures parallel to each other each one of which comprises first zones provided with a silicon oxide layer placed over a portion of the substrate which is comprised between two adjacent body region stripes, a polysilicon layer superimposed to the silicon oxide layer, a dielectric layer placed over and around the polysilicon layer. Some body region stripes comprise source regions of the first conductivity type which are placed adjacent to the first zones of the elementary structures to form elementary cells of said MOS transistor. The elementary structures and the body regions stripes extend longitudinally in a transversal way to the formation of the channel in the elementary cells of the MOS transistor and the first metal layer contacts the source regions. At least one elementary structure comprises at least a second zone adapted to allow the direct contact between the first metal layer and the underlying substrate portion arranged between two adjacent body regions stripes to perform the Schottky diode.
摘要:
An embodiment of an integrated electronic device formed in a semiconductor body delimited by a lateral surface, which includes: a substrate made of a first semiconductor material; a first epitaxial region made of a second semiconductor material, which overlies the substrate and defines a first surface; a second epitaxial region made of a third semiconductor material, which overlies the first surface and is in contact with the first epitaxial region, the third semiconductor material having a bandgap narrower than the bandgap of the second semiconductor material; an active area, extending within the second epitaxial region and housing at least one elementary electronic component; and an edge structure, arranged between the active area and the lateral surface, and including a dielectric region arranged laterally with respect to the second epitaxial region, which overlies the first surface and is in contact with the first epitaxial region.
摘要:
An embodiment of a process for manufacturing a power semiconductor device envisages the steps of: providing a body of semiconductor material having a top surface and having a first conductivity; forming columnar regions having a second type of conductivity within the body of semiconductor material, and surface extensions of the columnar regions above the top surface; and forming doped regions having the second type of conductivity, in the proximity of the top surface and in contact with the columnar regions. The doped regions are formed at least partially within the surface extensions of the columnar regions; the surface extensions and the doped regions have a non-planar surface pattern, in particular with a substantially V-shaped groove.
摘要:
A vertical-conduction and planar-structure MOS device having a double thickness gate oxide includes a semiconductor substrate including spaced apart active areas in the semiconductor substrate and defining a JFET area therebetween. The JFET area also forms a channel between the spaced apart active areas. A gate oxide is on the semiconductor substrate and includes a first portion having a first thickness on the active areas and at a periphery of the JFET area, and a second portion having a second thickness on a central area of the JFET area. The second thickness is greater than the first thickness. The JFET area also includes an enrichment region under the second portion of the gate oxide.
摘要:
A vertical-conduction and planar-structure MOS device having a double thickness gate oxide includes a semiconductor substrate including spaced apart active areas in the semiconductor substrate and defining a JFET area therebetween. The JFET area also forms a channel between the spaced apart active areas. A gate oxide is on the semiconductor substrate and includes a first portion having a first thickness on the active areas and at a periphery of the JFET area, and a second portion having a second thickness on a central area of the JFET area. The second thickness is greater than the first thickness. The JFET area also includes an enrichment region under the second portion of the gate oxide.
摘要:
Method of manufacturing an edge structure for a high voltage semiconductor device, including a first step of forming a first semiconductor layer of a first conductivity type, a second step of forming a first mask over the top surface of the first semiconductor layer, a third step of removing portions of the first mask in order to form at least one opening in it, a fourth step of introducing dopant of a second conductivity type in the first semiconductor layer through the at least one opening, a fifth step of completely removing the first mask and of forming a second semiconductor layer of the first conductivity type over the first semiconductor layer, a sixth step of diffusing the dopant implanted in the first semiconductor layer in order to form a doped region of the second conductivity type in the first and second semiconductor layers. The second step up to the sixth step are repeated at least one time in order to form a final edge structure including a number of superimposed semiconductor layers of the first conductivity type and at least two columns of doped regions of the second conductivity type, the columns being inserted in the number of superimposed semiconductor layers and formed by superimposition of the doped regions subsequently implanted through the mask openings, the column near the high voltage semiconductor device being deeper than the column farther from the high voltage semiconductor device.
摘要:
Semiconductor power device including a semiconductor layer of a first type of conductivity, wherein a body region of a second type of conductivity including source regions of the first type of conductivity is formed, a gate oxide layer superimposed to the semiconductor layer with an opening over the body region, polysilicon regions superimposed to the gate oxide layer, and regions of a first insulating material superimposed to the polysilicon regions. The device includes regions of a second insulating material situated on a side of both the polysilicon regions and the regions of a first insulating material and over zones of the gate oxide layer situated near the opening on the body region, oxide regions interposed between the polysilicon regions and the regions of a second insulating material, oxide spacers superimposed to the regions of a second insulating material.
摘要:
A MOS-gated power device includes a plurality of elementary functional units, each elementary functional unit including a body region of a first conductivity type formed in a semiconductor material layer of a second conductivity type having a first resistivity value. Under each body region a respective lightly doped region of the second conductivity type is provided having a second resistivity value higher than the first resistivity value.
摘要:
There is described a bipolar power transistor with high breakdown voltage, obtained in a heavily doped semiconductor substrate of the N type, over which a lightly doped N type layer, constituting a collector region of the transistor, is superimposed. The transistor has a base region comprising a heavily doped P type diffusion, which extends into the lightly doped N type layer from a top surface. The transistor further includes an emitter region constituted by a heavily doped N type diffusion extending from the top surface within said heavily doped P type diffusion. The heavily doped P type diffusion is obtained within a deep lightly doped P type diffusion, extending from said top surface into the lightly doped N type layer and formed with acceptor impurities of aluminum atoms.
摘要:
A high-speed MOS-technology power device integrated structure includes a plurality of elementary functional units formed in a lightly doped semiconductor layer of a first conductivity type, the elementary functional units including channel regions of a second conductivity type covered by a conductive insulated gate layer including a polysilicon layer; the conductive insulated gate layer also including a highly conductive layer superimposed over the polysilicon layer and having a resistivity much lower than the resistivity of the polysilicon layer, so that a resistance introduced by the polysilicon layer is shunted with a resistance introduced by the highly conductive layer and the overall resistivity of the insulated gate layer is lowered.