摘要:
An oven width measuring instrument capable of measuring the oven width continuously while being subject to no restrictions of measurement area or measuring time has: a sensor unit SU composed of an integrated combination of laser displacement sensors 16 and 17 each containing a beam emitting element and a beam receiving element in an outer package, a plurality of plate-like Peltier elements 20a-20d surrounding the outer package and arranged so as to direct their heat absorbing faces toward the outer package, an aluminum inner frame 18 for embedding gaps between the outer package and the heat absorbing faces of the Peltier elements, and cooling fin groups 21a-21d arranged on the heat radiating faces of the Peltier elements; and a housing 13 having an introduction part for introducing cooling air, a discharging part for discharging the cooling air used for cooling, and measurement windows 26 and 28 through which laser beams are passed. The sensor unit SU is accommodated in the housing.
摘要:
A backlight unit has an external electrode fluorescent lamp in a housing. The external electrode fluorescent lamp includes a glass bulb having a discharge space inside, and electrodes around both ends of the glass bulb. A protective layer and a phosphor layer are formed on an internal surface of the glass bulb in this order. The glass bulb is made of soda glass, and sodium oxide precipitated from this soda glass appears on part of the internal surface of the glass bulb where the protective layer is not formed, so as to be exposed to the discharge space.
摘要:
A low-pressure discharge lamp (1) is provided that includes a glass tube (2) having an inner diameter in a range of 1 to 5 mm and a pair of electrodes (3) disposed at end portions in the glass tube (2). The pair of electrodes (3) contain at least one transition metal selected from transition metals of Groups IV to VI. Mercury and a rare gas containing argon and neon are sealed in an inner portion of the glass tube (2). A relationship between a cathode glow discharge density J and a composition index α of the sealed rare gas of the low-pressure discharge lamp (1) satisfies the following expression α≦J=I/(S·P2)≦1.5α (where S represents an effective discharge surface area (mm2) of an electrode, I represents a RMS lamp current (mA), P represents a pressure (kPa) of a sealed rare gas, and α represents a composition index of a sealed rare gas that is a constant expressed by α=(90.5A+3.4N)×10−3 when a total of a composition ratio A of argon and a composition ratio N of neon is expressed by A+N=1).
摘要:
The invention is regarding to solid-state imaging device. A solid-state imaging device consistent with the present invention includes, a plurality of unit cells on a semiconductor substrate of a first conductivity type, each unit cell including a photoelectric conversion unit comprising a photodiode having a diffusion layer of a second conductivity type and a signal scanning circuit unit; a trench isolation region for isolating the photoelectric conversion unit from the signal scanning circuit unit, the trench isolation region being formed in the semiconductor substrate;a first element-isolating diffusion layer of the first conductivity type formed under a bottom face of the trench isolation region down to a position deeper than the diffusion layer of the photodiode from the surface of the semiconductor substrate.
摘要:
The present invention has an object to provide a cold-cathode fluorescent lamp which can suppress sputtering caused by electric discharge and reduce consumption of mercury so as to achieve a longer lifetime even if a lamp current is large and a lighting tube has a small diameter. The cold-cathode fluorescent lamp according to the present invention is characterized in that a distance between the inner surface of the lighting tube and the outer surface of a cylindrical electrode is set such that electric discharge develops mainly on the inner surface of the cylindrical electrode. When the lighting tube has an inside diameter D1 of 1 to 6 mm and the maximum lamp current is 5 mA or more, an outside diameter D2 of the cylinder electrode is preferably set at D1−0.4 [mm]≦D2
摘要:
A cold-cathode fluorescent lamp including a glass bulb and a pair of electrodes which are cylindrical and respectively inserted in two ends of the glass bulb. Two end portions of the glass bulb are substantially circular in transverse cross section, the two end portions respectively corresponding to the inserted pair of electrodes in length. At least part of a middle portion of the glass bulb is flat in transverse cross section, the middle portion corresponding to a space in the glass bulb between the pair of electrodes.
摘要:
A readout gate electrode is selectively formed on a silicon substrate. An N-type drain region is formed at one end of the readout gate electrode, and an N-type signal storage region is formed at the other end thereof. A P+-type surface shield region is selectively epitaxial-grown on the signal storage region, and a silicide block layer is formed on the surface shield region to cover at least part of the signal storage region. A Ti silicide film is selective epitaxial-grown on the drain region.
摘要:
A solid-state image sensor comprises a semiconductor substrate, a photoelectric conversion portion formed above the semiconductor substrate, and noise cancelers each formed, adjacent to the photoelectric conversion portion, on the semiconductor substrate through an insulating film, for removing noise of a signal read from the photoelectric conversion portion, wherein the semiconductor substrate has a conductive type opposite to a conductive type of a charge of the signal, and has a first region where concentration of impurities for determining the conductive type is high and a second region where concentration of the impurities on the first region is low.
摘要:
This invention prevents an end portion of the LOCOS region having a large number of defects of an MOS sensor from depletion and thereby reduces the leak current that occurs in the defects in the end portion of the LOCOS region. An n-type layer region is formed in a surface area of a p-type substrate for constituting a photodiode with the p-type layer. A LOCOS region is formed on a p+-type layer in a surface area of the silicon substrate as device separation region by oxidizing part of the silicon substrate. The n-type layer region and the LOCOS region are separated from each other by a predetermined distance. A contact region is formed and separated from the n-type layer region by a distance equal to the size of the gate electrode of the read-out transistor of the MOS sensor. A wiring layer is connected to the contact region. Then, a planarizing layer is formed to cover the n-type layer region, the LOCOS region, the gate electrode and the wiring layer.
摘要:
In an MOS-type solid-state imaging apparatus, plural unit cells are arranged in a two-dimensional matrix, unit cells in one horizontal line (row) are selected by a vertical address circuit, and vertical signal lines to which outputs from the unit cells in one vertical line (column) are supplied are selected by a horizontal address circuit, thereby sequentially outputting signals from the respective unit cells. Each unit cell includes an output circuit for outputting an output from a photodiode to a vertical signal line, photodiodes connected in parallel to the output circuit, and a selection switch for selecting one of the photodiodes and connecting it to the output circuit. The output circuit comprising an amplification transistor for amplifying an output from the photodiode, a selection transistor for selecting the unit cell, and a reset transistor for resetting the charge in the photodiode.