摘要:
This invention prevents an end portion of the LOCOS region having a large number of defects of an MOS sensor from depletion and thereby reduces the leak current that occurs in the defects in the end portion of the LOCOS region. An n-type layer region is formed in a surface area of a p-type substrate for constituting a photodiode with the p-type layer. A LOCOS region is formed on a p+-type layer in a surface area of the silicon substrate as device separation region by oxidizing part of the silicon substrate. The n-type layer region and the LOCOS region are separated from each other by a predetermined distance. A contact region is formed and separated from the n-type layer region by a distance equal to the size of the gate electrode of the read-out transistor of the MOS sensor. A wiring layer is connected to the contact region. Then, a planarizing layer is formed to cover the n-type layer region, the LOCOS region, the gate electrode and the wiring layer.
摘要:
A solid state imaging device comprises a plurality of unit cells formed in a surface region of a semiconductor substrate. Each of the unit cells comprises a photoelectric converter, an MOS-type read-out transistor for reading a signal from the photoelectric converter, an MOS-type amplifying transistor having a gate connected to a drain of the read-out transistor and for amplifying the signal read by the read-out transistor, a reset transistor having a source connected to the drain of the read-out transistor and for resetting a potential of a gate of the amplifying transistor, and an addressing element connected in series to the amplifying transistor and for selecting the unit cell. The read-out transistor is formed in a first device region in the semiconductor substrate. The reset transistor is formed in a second device region in the semiconductor substrate. The drain of the read-out transistor is connected to the source of the reset transistor through a wiring layer formed on the surface of the semiconductor substrate.
摘要:
This invention prevents an end portion of the LOCOS region having a large number of defects of an MOS sensor from depletion and thereby reduces the leak current that occurs in the defects in the end portion of the LOCOS region. An n-type layer region is formed in a surface area of a p-type substrate for constituting a photodiode with the p-type layer. A LOCOS region is formed on a p+-type layer in a surface area of the silicon substrate as device separation region by oxidizing part of the silicon substrate. The n-type layer region and the LOCOS region are separated from each other by a predetermined distance. A contact region is formed and separated from the n-type layer region by a distance equal to the size of the gate electrode of the read-out transistor of the MOS sensor. A wiring layer is connected to the contact region. Then, a planarizing layer is formed to cover the n-type layer region, the LOCOS region, the gate electrode and the wiring layer.
摘要:
A CCD imager has an array of rows and columns of picture elements on a semiconductor substrate. A vertical charge transfer gate section extends in a first direction on the substrate to be associated with the columns. The transfer gate section includes CCD channels in the substrate, and insulated transfer gate electrodes overlying these CCD channels. A plurality of buffer electrodes are formed at a first level over the substrate surface to overlie the transfer gate electrodes. A plurality of shunt wires are formed at a second level over the substrate surface to overlie the buffer electrodes. The charge transfer gate electrodes and the buffer electrodes are connected with each other by first contact holes. The buffer electrodes and the shunt wires are coupled together by second contact holes. The second contact holes are distributed so that the repeat period thereof as defined at least in a second direction transverse to the first direction on the substrate is equal to or less than two picture elements, whereby their spatial frequency at least in the second direction is half the sampling frequency of photoconversion in the CCD imager, or more.
摘要:
In an MOS-type solid-state imaging apparatus, plural unit cells are arranged in a two-dimensional matrix, unit cells in one horizontal line (row) are selected by a vertical address circuit, and vertical signal lines to which outputs from the unit cells in one vertical line (column) are supplied are selected by a horizontal address circuit, thereby sequentially outputting signals from the respective unit cells. Each unit cell includes an output circuit for outputting an output from a photodiode to a vertical signal line, photodiodes connected in parallel to the output circuit, and a selection switch for selecting one of the photodiodes and connecting it to the output circuit. The output circuit comprising an amplification transistor for amplifying an output from the photodiode, a selection transistor for selecting the unit cell, and a reset transistor for resetting the charge in the photodiode.
摘要:
An image system uses an amplification-type MOS sensor for receiving an optical image through a photoelectric conversion element, converting the image into an electrical signal, and outputting the signal. This system includes an optical system for guiding this optical image to a predetermined position, an image processing means having a sensor for photoelectrically converting the optical image guided to the predetermined position by the optical system into an electrical signal in units of pixels, and a signal process device for processing an output from the image processing means, and outputting the resultant data. The sensor includes a photoelectric conversion element placed at the predetermined position, an output circuit having an amplification MOS transistor connected to the photoelectric conversion element and serving to amplify and output an output from the photoelectric conversion element at a first timing and output noise independent of the output from the photoelectric conversion element at a second timing, and a noise reduction circuit, connected to the output of the output circuit, having the same impedance at the first and second timings when viewed from the output circuit, and obtaining the difference between outputs from the output circuits at the first and second timings. By setting the same impedance, proper noise cancellation can be performed.
摘要:
A solid-state imaging device includes an array of photosensitive cells, each of which includes a photoelectric conversion section, which is arranged on the surface of a substrate and has a light-receiving opening. The photoelectric conversion section generates a packet of electrical carriers in response to the amount of incident light thereinto through the opening. A charge transfer section is arranged adjacent to the photoelectric conversion section on the substrate surface. This transfer section defines thereunder a transfer channel region that extends linearly in a predetermined direction in the substrate surface, and causes the carriers thus obtained to move sequentially. A light-shield section is arranged to cover the photoelectric conversion section except the opening, for preventing an incident light coming through the opening from being introduced into the transfer channel region as a leak component, by cutting off an internal reflection path of the leak component thereto.
摘要:
A solid-state imaging device includes a substrate, and an array of charge-packet storage cells or picture elements (or "pixels") arranged on the substrate, each including a storage diode that stores therein a signal charge packet indicative of an incident light. A charge transfer section is coupled with the array of picture elements. The transfer section includes a charge-coupled device (CCD) register layer that is spaced apart from the storage diode to define a channel region therebetween, and a first insulated electrode overlying the register layer and the channel region. A reset section is coupled to the storage diode, for potentially resetting the storage diode by additionally injecting an extra charge packet into the storage diode and by causing the charge to drained from the storage diode. A potential controller is provided which forces, when a signal charge packet is read out of the storage diode toward the CCD register layer, the storage diode to decrease in potential so that the storage diode becomes potentially less than its potential as set during the reset operation, while causing the channel region to be fixed at almost the same potential during the read operation and the reset operation.
摘要:
A solid-state imaging device comprises a plurality of photoelectric conversion accumulation sections arranged two-dimensionally on a semiconductor substrate, a plurality of vertical CCDs for vertically transferring signal charges read out from the photoelectric conversion accumulation sections, and a horizontal CCD for receiving and horizontally transferring the signal charges transferred by the vertical CCDs. A gap between transfer electrodes of the horizontal CCD is less than a gap between transfer electrodes of the vertical CCDs. The transfer electrodes of the vertical CCDs have a single-layer electrode structure formed by patterning a first polysilicon film. The transfer electrodes of the horizontal CCD have an overlapping double-layer electrode structure comprising alternately arranged electrodes formed by patterning the first polysilicon film and electrodes intervening between the alternately arranged electrodes which are formed by patterning a second polysilicon film. The gap between the electrodes of the horizontal CCD is determined by a silicon oxide film obtained by subjecting the alternately arranged electrodes of the first polysilicon film to thermal oxidation.
摘要:
According to one embodiment, a solid-state imaging device includes first and second pixel portions, first and second transfer transistors, first and second accumulation portions, an element isolation region, first and second amplifier transistors, and a first and second signal lines. The first and second pixel portions include photoelectric conversion elements, respectively. The first and second transfer transistors transfer first and second charges photoelectrically converted by the first and second pixel portions, respectively. The first and second accumulation portions are interposed between the first and second pixel portions, and accumulate the first and second charges, respectively. The element isolation region is interposed between the first and second accumulation portions. The first and second amplifier transistors amplify voltages generated in accordance with the first and second charges accumulated in the first and second accumulation portions, respectively. The first and second signal lines output signal voltages amplify by the amplifier transistors, respectively.