Abstract:
A digital transmitter includes: a plurality of converting devices arranged to generate a plurality of converting signals according to a plurality of digital input signals; a compensation device arranged to generate at least one compensation signal according to the plurality of digital input signals; and a combining circuit arranged to output an amplified output signal according to the plurality of converting signals and the at least one compensation signal.
Abstract:
A digital signal up-converting apparatus includes: a clock generating circuit arranged to generate a reference clock signal; an adjusting circuit coupled to the clock generating circuit and arranged to generate a first clock signal and a second clock signal according to the reference clock signal; a baseband circuit coupled to the adjusting circuit for receiving the first clock signal, wherein the baseband circuit further generates a digital output signal according to the first clock signal; and a sampling circuit coupled to the adjusting circuit and the baseband circuit for receiving the second clock signal and the digital output signal, wherein the second clock signal and the digital output signal are non-overlapping; wherein the sampling circuit samples the digital output signal based on the second clock signal and then combines the sampled digital output signal in order to generate a combined digital signal.
Abstract:
A data converting device includes: a data sampling circuit arranged to up-sample a digital signal to generate an up-sampling signal according to a clock signal; a voltage level generating circuit arranged to generate an adjustable voltage; and a signal converting circuit arranged to generate a converting signal according to the adjustable voltage and the up-sampling signal.
Abstract:
A method operative on a wireless transceiver device for performing beamforming calibration includes: measuring at least one joint signal response of at least one circuit loopback between a transmitter of the wireless transceiver device and a receiver of the wireless transceiver device to determine the measurement result; and calibrating joint signal path mismatch according to the measurement result for s multiple antenna beamforming system operating on the wireless transceiver device.
Abstract:
A digital transmitter includes: a plurality of adjustable delay lines arranged to delay a plurality of digital input signals by a plurality of delay times to generate a plurality of delayed digital input signals respectively; a plurality of converting devices arranged to convert the plurality of delayed digital input signals into a plurality of converting signals respectively; and a calibration device arranged to adjust a delay time of at least one adjustable delay line in the plurality of adjustable delay lines to make the plurality of converting devices convert the plurality of delayed digital input signals at respective desire time points.
Abstract:
A digital signal up-converting apparatus includes: a clock generating circuit arranged to generate a reference clock signal; an adjusting circuit coupled to the clock generating circuit and arranged to generate a first clock signal and a second clock signal according to the reference clock signal; a baseband circuit coupled to the adjusting circuit for receiving the first clock signal, wherein the baseband circuit further generates a digital output signal according to the first clock signal; and a sampling circuit coupled to the adjusting circuit and the baseband circuit for receiving the second clock signal and the digital output signal, wherein the second clock signal and the digital output signal are non-overlapping; wherein the sampling circuit samples the digital output signal based on the second clock signal and then combines the sampled digital output signal in order to generate a combined digital signal.
Abstract:
A transmitter includes a first channel and a second channel. The first channel includes a first mixer, and is used for processing a first input signal to generate a first output signal; the second channel includes a second mixer, where the second channel does not receive any input signal. When the transmitter is operated under a first mode, both the first mixer and the second mixer receive oscillation signals.
Abstract:
A digital envelope tracking (DET) supply modulator is provided. The DET supply modulator includes a switching converter, a dynamic switched-capacitor circuit and a digital control circuit. The switching converter converts an input supply voltage into an output envelope tracking (ET) voltage according to a first control signal. The dynamic switched-capacitor circuit outputs multiple supplement voltages for supplementing alternating current (AC) components of the output ET voltage by multiple stages. More particularly, the dynamic switched-capacitor circuit comprises multiple switched-capacitor cells and a selection circuit, wherein the selection circuit is coupled to the multiple switched-capacitor cells. In detail, the multiple switched-capacitor cells generate the multiple supplement voltages, respectively, and the selection circuit controls switching of each of the multiple switched-capacitor cells according to a second control signal. The digital control circuit generates the first control signal and the second control signal according to a target envelope waveform of the output ET voltage.
Abstract:
A digital signal up-converting apparatus includes: a clock generating circuit arranged to generate a reference clock signal; an adjusting circuit coupled to the clock generating circuit and arranged to generate a first clock signal and a second clock signal according to the reference clock signal; a baseband circuit coupled to the adjusting circuit for receiving the first clock signal, wherein the baseband circuit further generates a digital output signal according to the first clock signal; and a sampling circuit coupled to the adjusting circuit and the baseband circuit for receiving the second clock signal and the digital output signal, wherein the second clock signal and the digital output signal are non-overlapping; wherein the sampling circuit samples the digital output signal based on the second clock signal and then combines the sampled digital output signal in order to generate a combined digital signal.
Abstract:
A digital signal up-converting apparatus includes: a clock generating circuit arranged to generate a reference clock signal; an adjusting circuit coupled to the clock generating circuit and arranged to generate a first clock signal and a second clock signal according to the reference clock signal; a baseband circuit coupled to the adjusting circuit for receiving the first clock signal, wherein the baseband circuit further generates a digital output signal according to the first clock signal; and a sampling circuit coupled to the adjusting circuit and the baseband circuit for receiving the second clock signal and the digital output signal, wherein the second clock signal and the digital output signal are non-overlapping; wherein the sampling circuit samples the digital output signal based on the second clock signal and then combines the sampled digital output signal in order to generate a combined digital signal.