Abstract:
The present invention provides a quadrature phase detector including a detection circuit. The detection circuit includes a first switch, a second switch and a first filter, wherein the first switch is controlled by a second clock signal to selectively couple a first clock signal to a first node, the second switch is controlled by the second clock signal to selectively coupled the first node to a reference voltage, and the first filter is configured to filter voltages at the first node to generate a first detection result.
Abstract:
A filter circuit includes a polyphase filter used to generate a plurality of output signals with different phases according to a plurality of input signals. The polyphase filter includes a switch circuit and a feed-forward capacitor. The switch circuit has a control terminal used to receive a control voltage, a first connection terminal used to output one of the output signals, and a second connection terminal used to receive one of the input signals. The feed-forward capacitor has a first plate coupled to the second connection terminal of the switch circuit and a second plate coupled to the control terminal of the switch circuit.
Abstract:
A class-D amplifier includes a loop filter, a pulse-width modulation (PWM) circuit, an output circuit, and a common-mode control circuit. The loop filter receives an input signal of the class-D amplifier to generate a filtered signal. The PWM circuit converts a non-PWM signal into a PWM signal, wherein the non-PWM signal is derived from at least the filtered signal. The output circuit generates an output signal of the class-D amplifier according to the PWM signal. The common-mode control circuit monitors a common-mode level of the output signal to generate a common-mode control signal for PWM common-mode control.
Abstract:
The present invention provides a filtering circuit comprising a poly phase filter and a quadrature phase detector. The poly phase filter comprises a first path, a second path, a third path and a fourth path. The first path is configured to receive a first input signal to generate a first clock signal. The second path comprising a first adjustable delay circuit is configured to receive the first input signal to generate a second clock signal. The third path comprising a second adjustable delay circuit is configured to receive a second input signal to generate a third clock signal. The fourth path is configured to receive the second input signal to generate a fourth clock signal. The quadrature phase detector is configured to detect phases of these clock signals to generate control signals to control the first adjustable delay circuit and the second adjustable delay circuit.
Abstract:
The present invention provides a filtering circuit comprising a poly phase filter and a quadrature phase detector. The poly phase filter comprises a first path, a second path, a third path and a fourth path. The first path is configured to receive a first input signal to generate a first clock signal. The second path comprising a first adjustable delay circuit is configured to receive the first input signal to generate a second clock signal. The third path comprising a second adjustable delay circuit is configured to receive a second input signal to generate a third clock signal. The fourth path is configured to receive the second input signal to generate a fourth clock signal. The quadrature phase detector is configured to detect phases of these clock signals to generate control signals to control the first adjustable delay circuit and the second adjustable delay circuit.
Abstract:
A digital transmitter includes: a plurality of adjustable delay lines arranged to delay a plurality of digital input signals by a plurality of delay times to generate a plurality of delayed digital input signals respectively; a plurality of converting devices arranged to convert the plurality of delayed digital input signals into a plurality of converting signals respectively; and a calibration device arranged to adjust a delay time of at least one adjustable delay line in the plurality of adjustable delay lines to make the plurality of converting devices convert the plurality of delayed digital input signals at respective desire time points.
Abstract:
A class-D amplifier includes a loop filter, a pulse-width modulation (PWM) circuit, an output circuit, and a common-mode control circuit. The loop filter receives an input signal of the class-D amplifier to generate a filtered signal. The PWM circuit converts a non-PWM signal into a PWM signal, wherein the non-PWM signal is derived from at least the filtered signal. The output circuit generates an output signal of the class-D amplifier according to the PWM signal. The common-mode control circuit monitors a common-mode level of the output signal to generate a common-mode control signal for PWM common-mode control.
Abstract:
A digital transmitter includes: a plurality of adjustable delay lines arranged to delay a plurality of digital input signals by a plurality of delay times to generate a plurality of delayed digital input signals respectively; a plurality of converting devices arranged to convert the plurality of delayed digital input signals into a plurality of converting signals respectively; and a calibration device arranged to adjust a delay time of at least one adjustable delay line in the plurality of adjustable delay lines to make the plurality of converting devices convert the plurality of delayed digital input signals at respective desire time points.
Abstract:
A fast-transient buffer is shown. The fast-transient buffer has a flipped voltage follower coupled between the input terminal and the output terminal of the fast-transient buffer, and a first MOS transistor coupled to the flipped voltage follower as well as the output terminal of the fast-transient buffer. The first MOS transistor regulates the output voltage of the output terminal of the fast-transient buffer, in the opposite direction in comparison with an output voltage regulation direction due to the flipped voltage follower.
Abstract:
The present invention provides a quadrature phase detector including a detection circuit. The detection circuit includes a first switch, a second switch and a first filter, wherein the first switch is controlled by a second clock signal to selectively couple a first clock signal to a first node, the second switch is controlled by the second clock signal to selectively coupled the first node to a reference voltage, and the first filter is configured to filter voltages at the first node to generate a first detection result.