Abstract:
Methods for using modified single wall carbon nanotubes (“SWCNTs”) to detect presence and/or concentration of a gas component, such as a halogen (e.g., Cl2), hydrogen halides (e.g., HCl), a hydrocarbon (e.g., CnH2n+2), an alcohol, an aldehyde or a ketone, to which an unmodified SWCNT is substantially non-reactive. In a first embodiment, a connected network of SWCNTs is coated with a selected polymer, such as chlorosulfonated polyethylene, hydroxypropyl cellulose, polystyrene and/or polyvinylalcohol, and change in an electrical parameter or response value (e.g., conductance, current, voltage difference or resistance) of the coated versus uncoated SWCNT networks is analyzed. In a second embodiment, the network is doped with a transition element, such as Pd, Pt, Rh, Ir, Ru, Os and/or Au, and change in an electrical parameter value is again analyzed. The parameter change value depends monotonically, not necessarily linearly, upon concentration of the gas component. Two general algorithms are presented for estimating concentration value(s), or upper or lower concentration bounds on such values, from measured differences of response values.
Abstract:
A method for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.
Abstract:
Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or NH3 or NF3 or F2 or CF4 or CnHm) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. The predominant species that are deposited on the CNT array vary with the distance d measured along a path from the precursor gas to the CNT array; two or three different predominant species can be deposited on a CNT array for distances d=d1 and d=d2>d1 and d=d3>d2.
Abstract:
Carbon nanotube (CNT) arrays can be used as a thermal interface materials (TIMs). Using a phase sensitive transient thermo-reflectance (PSTTR) technique, the thermal conductance of the two interfaces on either side of the CNT arrays can be measured. The physically bonded interface has a conductance ˜105 W/m2-K and is the dominant resistance. Also by bonding CNTs to target surfaces using indium, it can be demonstrated that the conductance can be increased to ˜106 W/m2-K making it attractive as a thermal interface material (TIM).
Abstract translation:碳纳米管(CNT)阵列可用作热界面材料(TIM)。 使用相敏瞬态热反射(PSTTR)技术,可以测量CNT阵列任一侧上两个界面的导热性。 物理键合界面电导率为〜105 W / m2-K,为主导电阻。 也可以通过使用铟将CNT粘合到靶表面,可以证明电导率可以提高到〜106W / m 2 -K,使其作为热界面材料(TIM)具有吸引力。
Abstract:
A novel method for simultaneously forming and filling and decorating carbon nanotubes with palladium nanoparticles is disclosed. Synthesis involves preparing a palladium chloride (PdCl2) solution in a container, having two graphite electrodes, then immersing the graphite electrode assembly, into the PdCl2 solution; connecting the graphite electrodes to a direct current power supply; bringing the electrodes into contact with each other to strike an arc; separating the electrodes to sustain the arc inside the solution; putting the container with electrode assembly in a water-cooled bath; and collecting Pd-nanoparticles encapsulated in carbon nanotubes and carbon nanotubes decorated with Pd-nanoparticles. The temperature at the site of the arc-discharge is greater than 3000° C. At these temperatures, the palladium is ionized into nanoparticles and the graphite electrodes generate layers of graphene (carbon), which roll away from the anode and encapsulate or entrap the Pd-nanoparticles. The unique nanotube structures have significant commercial potential as gas sensors or as a means for hydrogen storage.
Abstract:
A method for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.
Abstract:
Heat sink structures employing carbon nanotube or nanowire arrays to reduce the thermal interface resistance between an integrated circuit chip and the heat sink are disclosed. Carbon nanotube arrays are combined with a thermally conductive metal filler disposed between the nanotubes. This structure produces a thermal interface with high axial and lateral thermal conductivities.
Abstract:
Method and system for fabricating an electrical interconnect capable of supporting very high current densities (106–1010 Amps/cm2), using an array of one or more carbon nanotubes (CNTs). The CNT array is grown in a selected spaced apart pattern, preferably with multi-wall CNTs, and a selected insulating material, such as SiOw or SiuNv, is deposited using CVD to encapsulate each CNT in the array. An exposed surface of the insulating material is planarized to provide one or more exposed electrical contacts for one or more CNTs.
Abstract translation:用于制造能够支持非常高的电流密度(10 -6至10 10 Amps / cm 2)的电互连的方法和系统,使用 一个或多个碳纳米管(CNT)的阵列。 CNT阵列以选择的间隔开的图案生长,优选地使用多壁CNT,并且选择的绝缘材料,例如SiO 2或Si N 使用CVD沉积每个CNT以阵列中的每一个CNT。 绝缘材料的暴露表面被平坦化以为一个或多个CNT提供一个或多个暴露的电接触。
Abstract:
Method and system for detecting presence of biomolecules in a selected subset, or in each of several selected subsets, in a fluid. Each of an array of two or more carbon nanotubes (“CNTs”) is connected at a first CNT end to one or more electronics devices, each of which senses a selected electrochemical signal that is generated when a target biomolecule in the selected subset becomes attached to a functionalized second end of the CNT, which is covalently bonded with a probe molecule. This approach indicates when target biomolecules in the selected subset are present and indicates presence or absence of target biomolecules in two or more selected subsets. Alternatively, presence of absence of an analyte can be detected.
Abstract:
Methods and systems for determining if one or more target molecules are present in a gas, by exposing a functionalized carbon nanostructure (CNS) to the gas and measuring an electrical parameter value EPV(n) associated with each of N CNS sub-arrays. In a first embodiment, a most-probable concentration value C(opt) is estimated, and an error value, depending upon differences between the measured values EPV(n) and corresponding values EPV(n;C(opt)) is computed. If the error value is less than a first error threshold value, the system interprets this as indicating that the target molecule is present in a concentration C≈C(opt). A second embodiment uses extensive statistical and vector space analysis to estimate target molecule concentration.