摘要:
An electromechanical transmission includes a rotor supported by a rotor hub that has at least one passage formed therein for providing cooling fluid flow to the rotor. Preferably, cooling fluid is provided to the passage through an orifice to control flow rate. An inner diameter of the rotor is supported by the rotor hub and fluid is pooled by the rotor hub opposite the rotor inner diameter for cooling thereof. Preferably, fluid is thrown by centrifugal force from the rotor hub onto rotor ends and then onto an inner diameter side of stator windings of a stator surrounding the rotor. A method of cooling an electromechanical transmission is also provided.
摘要:
The present invention provides a multiplexed control system, employing a single solenoid valve, to selectively control the damper lock-out clutch and motor/generator cooling of an electronically variable hybrid transmission. The present invention also contemplates a method of selectively controlling damper lock-out clutch engagement and motor/generator cooling for an electrically variable hybrid transmission control.
摘要:
A servo valve for shifting a transmission between a park and out of park position includes a valve housing and a park servo. A first and second solenoid is disposed in the valve housing for transmitting a respective first or second signal to shift the transmission to the respective first or second state of operation. The park servo is fluidly connected to the transmission and is responsive to the first and second signals to shift the transmission to the respective positions. Fluid pressure within the valve housing moves a valve member therein to move a piston within the park servo to shift the transmission to the corresponding position. A third solenoid transmits a third signal in combination with the second signal to latch and hold the valve member in the corresponding position.
摘要:
A transmission includes two blocking valves that control fluid pressure to a plurality of clutches. The blocking valves are characterized by a plurality of states that result in at least three transmission operating conditions. Each of the three operating conditions is characterized by fluid pressure being unavailable to at least one of the clutches.
摘要:
A method for controlling cooling of one or more motor/generators includes monitoring the stator temperature of the motor/generator and power loss of the motor/generator. Total cooling flow is estimated from the monitored stator temperature and power loss and a cooling line pressure is determined from a lookup table. The lookup table includes total cooling flow as a function of cooling line pressure. The method further determines a non-cooling line pressure and combines the non-cooling line pressure with the cooling line pressure to determine a first total line pressure. The transmission is commanded to operate at the first total line pressure.
摘要:
An electrically variable transmission (EVT) selectively establishes various EVT modes and a neutral mode. The EVT includes a source of pressurized fluid, fluid-actuated clutches, various solenoid-actuated valves including trim valves and blocking valves adapted to control a flow of pressurized fluid to the clutches to establish the transmission operating modes, and an electronic control unit (ECU). The ECU actuates different combinations of the solenoid-actuated valves to establish the different transmission modes. The solenoid-actuated valves are configured in such a manner as to provide the EVT with one or more default operating modes in the event the ECU temporarily loses electrical power. Depending on the particular configuration, the default modes can be the neutral mode alone, or the neutral mode combined with one or more of the EVT modes, with the EVT modes enabled by providing one or both of the blocking valves with a latching feature.
摘要:
The present invention provides advanced hardware diagnostic detection for the clutch control components in a hydraulic control module of a multi-mode hybrid transmission. The detection scheme of the present invention utilizes pressure switch sensors to detect the position of each of the valves associated with the clutch control mechanization. The mechanization of these sensors with the valves provides the ability to clearly define the position of each of the valves, while also enabling the transmission electro-hydraulic control module (TEHCM) to diagnose the state of health of each pressure switch. This will allow the diagnostics to differentiate between a failed switch and a failed (e.g., “stuck” or “out of position”) valve. The present invention offers the ability to safely diagnose the clutch control components in a power transmission, while preventing unexpected and undesired shift sequencing within the transmission.
摘要:
A method and apparatus to control an electrically variable transmission, by dynamically controlling system main hydraulic clutch pressures, based upon required clutch capacity, as determined by output load of the transmission. Included is a method to regulate hydraulic clutch pressure in an electrically variable transmission equipped with at least one clutch. This comprises monitoring magnitude of slippage of the clutches and controlling hydraulic boost pressure based upon the magnitude of clutch slippage. Controlling hydraulic boost pressure based upon the magnitude of clutch slippage comprises monitoring operator inputs, determining a requested operator torque command, and determining a required main boost pressure. The main boost pressure is based upon the requested operator torque command, the monitored operator inputs, parameters of the EVT and clutches. Commanded main boost pressure is then determined based upon the determined required main boost pressure.
摘要:
A powertrain has an electrically variable hybrid transmission having an electro-hydraulic control system, plurality of electrical power units, and a plurality of torque transmitting mechanisms selectively engageable by the electro-hydraulic control system to provide four forward speed ranges, a neutral condition, an electric low speed mode, an electrically variable low and high speed mode, and two electrical power off drive home modes. The electro-hydraulic control system includes a multiplexed pressure switch system. The multiplexed pressure switch system of the present invention allows position detection of five torque transmitting mechanism control valves through the use of only four pressure switches.
摘要:
A method for providing an active engine stop of the engine of a hybrid electric vehicle. The method utilizes the electric machine to oppose and rapidly stop the rotation of the engine at a controlled rate. The method includes the calculation of an input speed reduction trajectory using the engine speed when the active engine stop request is made and a predetermined speed reduction interval. The speed reduction interval is less than a time from the active stop request to the shutoff command to the electric machine The method provides rapid deceleration of the engine, particularly through the powertrain resonance speed, reducing the amount of vibration energy dissipated through the powertrain and chassis. The method removes the electric machine torques from the engine prior to achieving zero engine speed in order to avoid imparting a negative engine speed or counter-rotation of the engine.