摘要:
Disclosed are methods of processing a semiconductor structure, involving the steps of depositing a light-degradable surface coupling agent on a semiconductor substrate; depositing a resist over the light-degradable surface coupling agent; irradiating portions of the resist, wherein the light-degradable surface coupling agent under the irradiated portions of the resist at least partially decomposes; and developing the resist.
摘要:
A system for regulating the time and temperature of a development process is provided. The system includes one or more light sources, each light source directing light to one or more gratings being developed on a wafer. Light reflected from the gratings is collected by a measuring system, which processes the collected light. Light passing through the gratings may similarly be collected by the measuring system, which processes the collected light. The collected light is indicative of the progress of development of the respective portions of the wafer. The measuring system provides progress of development related data to a processor that determines the progress of development of the respective portions of the wafer. The system also includes a plurality of heating devices, each heating device corresponds to a respective portion of the developer and provides for the heating thereof. The processor selectively controls the heating devices so as to regulate temperature of the respective portions of the wafer.
摘要:
One aspect of the present invention relates to a method for reducing resist residue defects on a wafer structure. The method involves providing a semiconductor structure having a photoresist, the photoresist comprising open areas and circuit areas thereon; irradiating the open areas and circuit areas through a first photomask with a first energy dose to effect an image-wise pattern in the photoresist; irradiating the open areas of the photoresist through a second photomask with a second energy dose; and developing the photoresist.
摘要:
The present invention is directed to a system and a method for controlling a thin film formation on a moving substrate as part of a process for manufacturing an integrated circuit. The invention involves the use of scatterometry to control the thin film formation process by analyzing the thin film on the moving substrate in a periodic manner. A registration feature associated with the moving substrate can be utilized in conjunction with a signaling system to determine a position of the moving substrate, whereby a repeatable analysis of a corresponding location on the moving substrate can be performed. Scatterometry permits in-situ measurements of thin film formation progress, whereby thin film formation process conditions can be controlled in a feedback loop to obtain a targeted result. Scatterometry can also be facilitated by providing a grating pattern on a non-production portion of the substrate.
摘要:
The present invention relates to wafer alignment. A reticle is employed which includes, a design, and a first and second set of scribe marks. The first and second sets of scribe marks have an associated symmetry relative to the reticle design. The design and scribe marks are printed at selected field locations on a surface layer of the wafer. The first and second sets of scribe marks as printed at adjacent fields on the surface layer of wafer form a composite set of scribe marks. The symmetric relationship between the first and second sets of scribe marks results in the composite set of scribe marks substantially negating print errors of the marks due to reticle rotation and/or lens magnification with respect to a geometric reference point of the composite set of scribe marks. The employment of the composite set of scribe marks, such as to locate a corresponding virtual alignment mark, substantially facilitates mitigation of overlay error in wafer alignment.
摘要:
One aspect of the present invention relates to a method of forming an advanced low k material between metal lines on a semiconductor substrate, involving the steps of providing the semiconductor substrate having a plurality of metal lines thereon; depositing a spin-on material over the semiconductor substrate having the plurality of metal lines thereon; and at least one of heating or etching the semiconductor substrate whereby at least a portion of the spin-on material is removed, thereby forming the advanced low k material comprising at least one air void between the metal lines, the advanced low k material having a dielectric constant of about 2 or less. Another aspect of the present invention relates to a method of forming a semiconductor structure, involving the steps of forming a first plurality of metal lines on the semiconductor structure; depositing a spin-on material over the semiconductor substrate having the plurality of metal lines thereon; forming a plurality of openings in the spin-on material exposing a portion of the metal lines and depositing metal to form a plurality of metal vias in the openings; forming a second plurality of metal lines over at least a portion of the metal vias; and at least one of heating or etching the semiconductor structure whereby at least a portion of the spin-on material is removed, thereby forming an advanced low k material comprising at least one air void, the advanced low k material having a dielectric constant of about 2 or less.
摘要:
One aspect of the present invention relates to a method for reducing carbon contamination on a mask involving placing a mask plate having carbon-containing contaminants thereon in a processing chamber; simultaneously contacting the mask plate with oxygen and exposing the mask plate with a flood exposure of electron beams wherein the carbon-containing contaminants are converted to a by-product; and removing the by-product from the processing chamber.
摘要:
In one embodiment, the present invention relates to a method of processing a semiconductor substrate, involving the steps of providing the semiconductor substrate having an upper surface; roughening the upper surface of the semiconductor substrate so that the upper surface of the semiconductor substrate has an Rtm of about 10 Å or more; and depositing an ultra-thin photoresist on the upper surface of the semiconductor substrate, the ultra-thin photoresist having a thickness of about 2,000 Å or less.
摘要:
In one embodiment, the present invention relates to a method of processing an irradiated photoresist involving the steps of placing a substrate having the irradiated photoresist thereon at a first temperature in a rapid thermal anneal furnace; heating the substrate having the irradiated photoresist thereon to a second temperature within about 0.1 seconds to about 10 seconds; cooling the substrate having the irradiated photoresist thereon to a third temperature in a rapid thermal annealing furnace within about 0.1 seconds to about 10 seconds; and developing the irradiated photoresist, wherein the second temperature is higher than the first temperature and the third temperature. In another embodiment, the present invention relates to a system of processing a photoresist, containing a source of actinic radiation and a mask for selectively irradiating a photoresist; a rapid thermal annealing furnace for rapidly heating and rapidly cooling a selectively irradiated photoresist, wherein the rapid heating and rapid cooling are independently conducted within about 0.1 seconds to about 10 seconds; and a developer for developing a rapid thermal annealing furnace heated and selectively irradiated photoresist into a patterned photoresist.
摘要:
In one embodiment, the present invention relates to a method of forming a conductive structure having a width of about 100 nm or less, involving the steps of providing a substrate having a conductive film; patterning a sidewall template over a first portion of the conductive film wherein a second portion of the conductive film is exposed, the sidewall template having at least one sidewall over the conductive film; depositing a sidewall film over the conductive film and the sidewall template, the sidewall film having a vertical portion adjacent the sidewall of the sidewall template and a horizontal portion in areas not adjacent the sidewall of the sidewall template; removing the horizontal portion of the sidewall film exposing a third portion of the conductive film; removing the sidewall template exposing a fourth portion of the conductive film; and etching the third portion and the fourth portion of the conductive film thereby providing the conductive structure having a width of about 100 nm or less underlying the vertical portion of the sidewall film.