摘要:
In one embodiment, the present invention relates to a method of forming a silicon oxynitride antireflection coating over a metal layer, involving the steps of providing a semiconductor substrate comprising the metal layer over at least part of the semiconductor substrate; depositing a silicon oxynitride layer over the metal layer having a thickness from about 100 Å to about 150 Å; and forming an oxide layer having a thickness from about 5 Å to about 50 Å over the silicon oxynitride layer to provide the silicon oxynitride antireflection coating. In another embodiment, the present invention relates to a method of reducing an apparent reflectivity of a metal layer having a first reflectivity in a semiconductor structure, involing forming a silicon oxynitride antireflection coating over the metal layer; wherein the silicon oxynitride antireflection coating formed over the metal layer has a second reflectivity and is formed by depositing silicon oxynitride on the metal layer by chemical vapor deposition and forming an oxide layer over the oxynitride, and the difference between the first reflectivity and the second reflectivity is at least about 60%.
摘要:
In one embodiment, the present invention relates to a method of processing a semiconductor substrate, involving the steps of providing the semiconductor substrate having an upper surface; roughening the upper surface of the semiconductor substrate so that the upper surface of the semiconductor substrate has an Rtm of about 10 Å or more; and depositing an ultra-thin photoresist on the upper surface of the semiconductor substrate, the ultra-thin photoresist having a thickness of about 2,000 Å or less.
摘要:
A method for forming a semiconductor device is described. The method comprises forming a first layer over a semiconductor substrate. At least one hole is formed through the first layer. A bottom anti-reflective coating (BARC) layer is formed in the at least one hole. The BARC layer is exposed to an electron beam (e-beam) so that the BARC layer reaches a flow temperature in the at least one hole. An etch is performed to form a trench in the first layer and over the at least one hole, wherein the BARC layer in the at least one hole acts as an etch resistant layer during the etch.
摘要:
A method for forming a semiconductor device comprises forming a first layer over a semiconductor substrate. At least one hole is formed through the first layer. A bottom anti-reflective coating (BARC) layer is formed in the at least one hole. A first heating is performed to heat the BARC layer to a flow temperature. A second heating is performed to heat the BARC layer to a hardening temperature so that the BARC layer hardens, wherein the hardening temperature is greater than the flow temperature. An etch is performed to form a trench in the first layer and over the at least one hole, wherein the hardened BARC layer in the at least one hole acts as an etch resistant layer during the etch. As an alternative to the second heating step, the BARC may be simply hardened. The first and second heating may be performed within a heating chamber without removing the semiconductor substrate.
摘要:
An exemplary method of using silicon containing imaging layers to define sub-resolution gate structures can include depositing an anti-reflective coating over a layer of polysilicon, depositing an imaging layer over the anti-reflective coating, selectively etching the anti-reflective coating to form a pattern, and removing portions of the polysilicon layer using the pattern formed from the removed portions of anti-reflective coating. Thus, the use of thin imaging layer, that has high etch selectivity to the organic underlayer, allows the use of trim etch techniques without a risk of resist erosion or aspect ratio pattern collapse. That, in turn, allows for the formation of the gate pattern with widths less than the widths of the pattern of the imaging layer.
摘要:
There is provided a method of making a dual inlaid via in a first layer. The first layer may be a polymer intermetal dielectric, such as HSQ, of a semiconductor device. The method includes forming a first opening, such as a via, in the first layer and forming an inorganic base radiation sensitive layer in the first opening. The radiation sensitive layer may be a polysilane imaging layer. The inorganic base radiation sensitive layer is selectively exposed to radiation and then patterned. A second opening, such a trench, is formed in communication with the first opening using the patterned inorganic base radiation sensitive layer as a mask. A conductive layer may be formed in the dual inlaid via to complete a dual damascene process.
摘要:
A damascene process can be utilized to form a T-shaped gate. A silicon rich nitride or SiON layer can be etched to form a first aperture. An oxide layer can be provided above the silicon rich nitride layer or SiON layer. A second aperture or trench can be provided in the oxide layer. The second trench can have a larger width than the trench in the silicon rich nitride layer or SiON layer. A gate conductor material, such as polysilicon, can be provided in the first trench and/or the second trench.
摘要:
There is provided a method of making a dual inlaid via in a first layer. The first layer may be a polymer intermetal dielectric, such as HSQ, of a semiconductor device. The method includes forming a first opening, such as a via, in the first layer and forming a bilayer resist in the first opening. The bilayer resist includes an imaging layer above a bottom antireflective coating (BARC). The imaging layer is selectively exposed to radiation such that no radiation reaches the lower section of the BARC in the first opening through the upper section of the BARC. The bilayer resist is pattered, and a second opening, such as a trench, is formed in communication with the first opening using the patterned bilayer resist as a mask.
摘要:
The present invention uses in situ scatterometry to determine if a defect (e.g., photoresist erosion, photoresist bending and pattern collapse) is present on a wafer. In one embodiment, in situ scatterometry is used to detect a pattern integrity defect associated with the layer of photoresist. In situ scatterometry produces diffraction data associated with the thickness of the photoresist patterned mask. This data is compared to a model of diffraction data associated with a suitable photoresist thickness. If the measured diffraction data is within an acceptable range, the next step of the photolithography process is carried out. However, if the measured thickness is outside of the suitable range, a defect is detected, and the wafer may be sent for re-working or re-patterned prior to main etch, thereby preventing unnecessary wafer scrap. Another aspect of the present invention allows for a feedback control mechanism to alter a physical parameter of the photolithographic process based upon the in situ scatterometry measurements.
摘要:
A method of forming a semiconductor device is described. A bottom anti-reflective coating (BARC) is formed in a plurality of holes and on a first surface of a layer of a semiconductor device. A scatterometry measurement on at least a portion of the BARC is performed to produce measurement diffraction data. A thickness of the BARC in the plurality of holes is predicted by comparing the first diffraction data to a model of diffraction data to provide a predicted thickness, tp, and it is determined if the predicted thickness, tp, is within a target thickness range, &Dgr;td. The forming of the BARC is controlled in response to the prediction of the BARC thickness. A corresponding thickness control device for controlling the BARC thickness is also disclosed.