Abstract:
A method for manufacturing electrodes of a plasma display panel includes providing a front transparent substrate including transparent electrodes on the front transparent substrate, coating a black photosensitive paste film and a main photosensitive conductive paste film of negative-working type on the transparent electrodes, exposing the black photosensitive paste film and main photosensitive conductive paste film to define bus electrodes on the transparent electrodes, wherein exposure energy acting on main regions of the bus electrodes is greater than exposure energy acting on edge regions of the bus electrodes, developing the black photosensitive paste film and main photosensitive conductive paste film to form the bus electrodes, in which a thickness of the edge regions of the bus electrodes is less than a thickness of the main regions of the bus electrodes, and firing the black photosensitive paste film and main photosensitive conductive paste film.
Abstract:
A front panel structure of Plasma Display Panel (PDP) is disclosed sequentially comprising a first electrode, a second electrode and a third electrode, wherein the second electrode has transparent electrodes located on both top and bottom sides of a bus electrode. A first discharge center is formed between a transparent electrode of the first electrode and one transparent electrode of the second electrode. A second discharge center is formed between the other transparent electrode of the second electrode and a transparent electrode of the third electrode. Therefore, an emitting cell of PDP has two discharge centers. To make the discharge more stable, we choose the first electrode and the third electrode to become the scan electrodes, or to form a thicker dielectric layer or discharge deactivation film below the second bus electrode as a scan electrode.
Abstract:
A barrier rib structure for a plasma display panel is described. The barrier rib structure formed on a back substrate has a plurality of parallel barrier ribs. Each barrier rib has a plurality of discharge spaces therein divided by separate walls. Each of the discharge spaces is connected to a small gas channel beside the barrier rib through a small connect opening.
Abstract:
A flash memory controller includes a recording medium and a processing circuit. When the amount of stored data in a flash memory module is less than a first threshold, the processing circuit controls a read and write circuit of the flash memory module to program a target data block using program threshold voltages within a first voltage range so as to write data into the target data block. When the amount of stored data in the flash memory module is greater than a second threshold, the processing circuit controls the read and write circuit to program the target data block using program threshold voltages within a second voltage range so as to write data into the target data block, wherein the second threshold is greater than the first threshold and the first voltage range is less than the second voltage range.
Abstract:
A flash memory controller includes a recording medium and a processing circuit. When the amount of stored data in a flash memory module is less than a first threshold, the processing circuit controls a read and write circuit of the flash memory module to program a target data block using program threshold voltages within a first voltage range so as to write data into the target data block. When the amount of stored data in the flash memory module is greater than a second threshold, the processing circuit controls the read and write circuit to program the target data block using program threshold voltages within a second voltage range so as to write data into the target data block, wherein the second threshold is greater than the first threshold and the first voltage range is less than 50% of the second voltage range.
Abstract:
A method for performing data pattern management regarding data accessed by a controller of a Flash memory includes: when the controller receives a write command, generating a first random function, where the write command is utilized for instructing the controller to write the data into the Flash memory; and adjusting a plurality of bits of the data bit by bit to generate a pseudo-random bit sequence, and writing the pseudo-random bit sequence into the Flash memory to represent the data, whereby data pattern distribution of the data is adjusted. An associated memory device and the controller thereof are also provided, where the controller includes: a ROM arranged to store a program code; a microprocessor arranged to execute the program code to control the access to the Flash memory and manage a plurality of blocks; and a randomizer arranged to generate a random function. The controller can perform data pattern management.
Abstract:
The present invention provides a PDP structure comprising a first substrate, a second substrate and a Waffle barrier rib structure located between the first and second substrate. The Waffle barrier rib structure comprises three first barrier ribs having different width and a plurality of second barrier ribs perpendicular to the first barrier ribs. The second barrier ribs are located between the two first barrier ribs, and connect the wider structure of the two first barrier ribs. Therefore, discharge spaces are formed. Because of different width, the height difference of the barrier rib structure is formed after thermal process. Hence, gas can pass through the barrier ribs structure between the front and the back substrate sealed together.
Abstract:
The present invention provides a rear plate structure for a plasma display panel. The rear plate structure includes a substrate, a plurality of parallel electrodes disposed on a surface of the substrate, a dielectric layer covering the electrodes and the surface of the substrate, a plurality of barrier ribs disposed on the dielectric layer, a reflective layer covering each side wall of the barrier ribs and the exposed dielectric layer, and a fluorescent layer covering the reflective layer.
Abstract:
An adjustable laser module has a main body, a laser generator provided in the hollow interior of the main body at a first end thereof for emitting a laser beam, a cylindrical lens provided in the hollow interior at a second end thereof, a first adjusting device coupled to the first end and the laser generator for adjusting the angle of the laser generator with respect to the main body, and a second adjusting device coupled to the second end and the cylindrical lens for adjusting the angle of the cylindrical lens with respect to the main body.
Abstract:
A driving electrode structure of a plasma display panel is described. The driving electrode structure has a driving electrode located in one luminant cell of each pixel. The driving electrode is formed on a transparent electrode and separated by a distance from the side of the transparent electrode adjacent to the edge of the luminant cells. The driving electrode has two branches coupled to a main electrode or a side electrode at the side of the transparent electrode adjacent to the edge of luminant cells. The driving electrode approximates the discharge center of the luminant cell to improve the driving characteristic.