Abstract:
Disclosed are flexible hybrid conversion systems that can be used with a wide spectrum of resources and feedstock. The disclosed systems can be sufficiently versatile to provide many added value products including clean energy, synthetic fuels and chemical products. Processes and system disclosed herein can produce, for example, shaft power and/or electricity from the expansion of species change of hot, hydrogen-laden syngas produced by gasification or steam reforming of inferior feedstock such as coal, bitumen, tar from sands and wastes, including biomass, municipal solid waste (MSW) sewage sludge and certain industrial wastes. This disclosure also teaches innovative system thermal integration methods of endothermic and exothermic processes and reaction enhancement approaches for the economic, clean and flexible production of synthetic gaseous and liquid fuels as well as chemicals.
Abstract:
A novel process and apparatus for power generation from biomass and other carbonaceous feedstocks are provided. The process integrates a pulse combustor steam reformer with a gas turbine to generate electricity such that (i) efficiency is higher than those of conventional and current advanced power systems, (ii) emissions are lower than those proposed in the new environmental regulations, and (iii) performance is comparable to that of combined cycle, even though a bottoming cycle is not included here. The pulse combustor steam reformer generates a hydrogen-rich, medium-Btu fuel gas that is fired in a gas turbine to generate electricity. The apparatus may be configured to produce only power or combined heat and power.
Abstract:
An apparatus and process using a pulse combustor to atomize a liquid or slurry is provided. The apparatus includes a pulse combustor for generating a stream of atomization fluid and an oscillating flow field and introduction apparatus for introducing to the influence of the oscillating stream of atomization fluid a liquid or slurry to be atomized. Furthermore, an improved pulse combustion atomizer employing a T-shaped burner is provided.
Abstract:
An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance agglomeration of particulates which may be collected and removed using a conventional separation apparatus. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, added particulates may include a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.
Abstract:
Resonant tubes of a pulse combustor are immersed in a bed of solid particles in a reaction zone to provide indirect heat from the pulsating combustion gases to the solid particles of the bed. The bed is maintained in an agitated state by a gas or vapor flowing through the bed. Reactant materials are introduced into the agitated bed and undergo reaction at enhanced rates resulting from heat transfer coefficients at least about twice as high as those of steady flow combustors and an intense acoustic pressure level propagated from the pulsating combustor into the reaction zone. The apparatus is useful, for example, to steam reform heavy hydrocarbons and to gasify carbonaceous material, including biomass and black liquor to produce combustible gas at relatively low temperatures, with steam being utilized as the bed fluidizing medium. Black liquor gasification, utilizing sodium carbonate as bed solids, results in liquor energy and chemical content recovery without smelt production.
Abstract:
A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.
Abstract:
A novel process and apparatus for power generation from biomass and other carbonaceous feedstocks are provided. The process integrates a pulse combustor steam reformer with a gas turbine to generate electricity such that (i) efficiency is higher than those of conventional and current advanced power systems, (ii) emissions are lower than those proposed in the new environmental regulations, and (iii) performance is comparable to that of combined cycle, even though a bottoming cycle is not included here. The pulse combustor steam reformer generates a hydrogen-rich, medium-Btu fuel gas that is fired in a gas turbine to generate electricity. The apparatus may be configured to produce only power or combined heat and power.
Abstract:
A gasifier system and process comprises a pulse combustion device in communication with a fluid channel for producing a gas stream having heat or fuel value. The pulse combustion device is operated under sub-stoichiometric conditions such that combustion and steam reforming both occur in the fluid channel. The pulse combustion device also produces a pulsating combustion product stream and an acoustic pressure wave. The acoustic pressure wave serves to cause agglomeration of particles contained within the combustion stream for easy removal. In one embodiment, a sulfur capturing agent is injected into the fluid channel for not only removing sulfur from the combustion product stream but for also facilitating particle agglomeration. Ultimately, a gas stream containing hydrogen is produced that may be used in various processes, such as in the production of electricity.
Abstract:
A gasifier system and process comprises a pulse combustion device in communication with a fluid channel for producing a gas stream having heat or fuel value. The pulse combustion device is operated under sub-stoichiometric conditions such that combustion and steam reforming both occur in the fluid channel. The pulse combustion device also produces a pulsating combustion product stream and an acoustic pressure wave. The acoustic pressure wave serves to cause agglomeration of particles contained within the combustion stream for easy removal. In one embodiment, a sulfur capturing agent is injected into the fluid channel for not only removing sulfur from the combustion product stream but for also facilitating particle agglomeration. Ultimately, a gas stream containing hydrogen is produced that may be used in various processes, such as in the production of electricity.
Abstract:
A novel process and apparatus for power generation from biomass and other carbonaceous feedstocks are provided. The process integrates a pulse combustor steam reformer with a fuel cell to generate electricity such that (i) efficiencies are higher than those of conventional and emerging advanced power systems, and (ii) emissions are lower than those proposed by the new environmental regulations, i.e. one-tenth of the New Source Performance Standards. The pulse combustor steam reformer generates a hydrogen-rich, medium-Btu fuel gas that is electrochemically oxidized in the fuel cell to generate electricity. The apparatus may be configured to produce only power or combined heat and power.