摘要:
The whole surface of an insulating substrate having an amorphous silicon film formed thereon is scanned/irradiated with a solid-state pulsed laser beam shaped linearly or rectangularly, to form a uniform fine poly-crystalline silicon film for forming a pixel region. The periphery of the pixel region is scanned/irradiated with a time-modulated continuous-wave solid-state laser beam formed linearly. Thus, a peripheral circuit region including a drive circuit is formed as a poly-crystalline silicon film with crystals growing up in the scanning direction. Pixel portion thin film transistors are produced in the uniform fine poly-crystalline silicon film, while a drive circuit or an interface circuit is produced in the peripheral circuit region. One of substrates of a display panel is formed thus. A display panel including transistors with uniform properties in the pixel portion and transistors with excellent properties in the peripheral circuit portion including the drive circuit is obtained.
摘要:
An amorphous silicon film on an insulating substrate portion to be formed as an individual display panel in a large-sized insulating substrate is irradiated with a continuous-wave (CW) solid-state laser beam condensed linearly, while being scanned therewith at a fixed speed in the width direction of the condensed laser beam. A pixel portion and a peripheral circuit portion in the same insulating substrate portion are irradiated with the laser beam temporally modulated to have a power density high enough to provide predetermined crystallinity. The amorphous silicon film is transformed into a silicon film having crystallinity corresponding to performance required for thin film transistors to be built in each of the pixel portion and the peripheral circuit portion. In such a manner, a thin film transistor circuit having optimum crystallinity required in the pixel or peripheral circuit portion can be obtained while high throughput is kept. Thus, a product having good display features as a display panel can be provided inexpensively.
摘要:
An amorphous silicon film on an insulating substrate portion to be formed as an individual display panel in a large-sized insulating substrate is irradiated with a continuous-wave (CW) solid-state laser beam condensed linearly, while being scanned therewith at a fixed speed in the width direction of the condensed laser beam. A pixel portion and a peripheral circuit portion in the same insulating substrate portion are irradiated with the laser beam temporally modulated to have a power density high enough to provide predetermined crystallinity. The amorphous silicon film is transformed into a silicon film having crystallinity corresponding to performance required for thin film transistors to be built in each of the pixel portion and the peripheral circuit portion. In such a manner, a thin film transistor circuit having optimum crystallinity required in the pixel or peripheral circuit portion can be obtained while high throughput is kept. Thus, a product having good display features as a display panel can be provided inexpensively.
摘要:
A laser beam temporally modulated in amplitude by a modulator and shaped into a long and narrow shape by a beam shaper is rotated around the optical axis of an image rotator inserted between the beam shaper and a substrate. Thus, the longitudinal direction of the laser beam having the long and narrow shape is rotated around the optical axis on the substrate. In order to perform annealing in a plurality of directions on the substrate, the laser beam shaped into the long and narrow shape is rotated on the substrate while a stage mounted with the substrate is moved only in two directions, that is, X- and Y-directions.In such a manner, the substrate can be scanned at a high speed with a continuous wave laser beam modulated temporally in amplitude and shaped into a long and narrow shape, without rotating the substrate. Thus, a semiconductor film can be annealed.
摘要:
A laser beam temporally modulated in amplitude by a modulator and shaped into a long and narrow shape by a beam shaper is rotated around the optical axis of an image rotator inserted between the beam shaper and a substrate. Thus, the longitudinal direction of the laser beam having the long and narrow shape is rotated around the optical axis on the substrate. In order to perform annealing in a plurality of directions on the substrate, the laser beam shaped into the long and narrow shape is rotated on the substrate while a stage mounted with the substrate is moved only in two directions, that is, X- and Y-directions. In such a manner, the substrate can be scanned at a high speed with a continuous wave laser beam modulated temporally in amplitude and shaped into a long and narrow shape, without rotating the substrate. Thus, a semiconductor film can be annealed.
摘要:
A TFT device having a pixel portion and a driving circuit portion formed on a glass substrate; wherein at least the active layer (active region) of a transistor constituting said driving circuit comprises polycrystalline silicon including crystals that do not have crystal grain boundaries which cross the direction of current flow.
摘要:
A TFT device having a pixel portion and a driving circuit portion formed on a glass substrate; wherein at least the active layer (active region) of a transistor constituting said driving circuit comprises polycrystalline silicon including crystals that do not have crystal grain boundaries which cross the direction of current flow.
摘要:
A laser beam is concentrated using an objective lens and radiated on a amorphous silicon film or polycrystalline silicon film having a grain size of one micron or less, the laser beam being processed from a continuous wave laser beam (1) to be pulsed using an EO modulator and to have arbitrary temporal energy change while pulsing ; (2) to have an arbitrary spatial energy distribution using a beam-homogenizer, filter having an arbitrary transmittance distribution, and rectangular slit; and (3) to eliminate coherency thereof using a high-speed rotating diffuser. In this manner, it is possible to realize a liquid crystal display device in which a driving circuit comprising a polycrystalline silicon film having substantially the same properties as a single crystal is incorporated in a TFT panel device.
摘要:
Arrangements (e.g., methods) for manufacturing a display device, including irradiating an amorphous semiconductor film formed on a substrate with an excimer laser beam to convert the amorphous semiconductor film into a polycrystalline semiconductor film; and irradiating predetermined areas of the polycrystalline semiconductor film intermittently with a continuous wave laser beam while a position of the substrate with respect to the continuous wave laser beam is scanned, crystal grains larger than those of the polycrystalline semiconductor film other than the predetermined areas are formed in each of the predetermined areas locally in the polycrystalline semiconductor film, wherein first thin film transistors are formed in the predetermined areas while second thin film transistors are formed in the polycrystalline semiconductor film other than the predetermined areas thereof.
摘要:
Apparatus for fabricating a display device includes a stage capable of mounting an insulating substrate of the display device and moving the insulating substrate, linear scales which detect a position or moving distance of the substrate, a laser oscillator which generates continuous-waves laser light, a modulator which turns ON/OFF the continuous-wave laser light, a beam forming optic which shapes the continuous-wave laser light passing through the modulator into a linear or rectangular form, an objective lens which projects the at least one of the laser light on the insulating substrate so as to irradiate the insulating substrate with the laser light. The controller counts signals generated by the linear scales for every movement of the stage for a given distance, causes the modulator to turn the generated continuous-wave laser light in an ON state at time when a position of the insulating substrate on which the laser light irradiation is to be started reaches an area on which the laser light is projected, and causes the modulator to turn the generated continuous-wave laser light in an OFF state at another time.