Abstract:
A liquid crystal display device is made up of a TFT substrate, an opposed substrate and a liquid crystal layer arranged between these substrates, in which the TFT substrate is provided with gate lines, data lines and TFT on its transparent insulative substrate, in addition, a passivation film is provided so as to cover them. Color filter is provided on the passivation film, and black matrix is provided at corresponding area to above part of the TFT and to above part of the data line on the color filter. In addition, a first overcoat layer with film thickness of degree of 1 to 3 nullm is provided so as to cover the black matrix. Further, a second overcoat layer with film thickness of approximate 0.5 nullm is provided at the whole surface except for a contact hole. Furthermore, a pixel electrode is provided on pixel formation area on the second overcoat layer.
Abstract:
In an active matrix liquid-crystal display device, dummy contact holes are provided between neighboring terminals, so as to prevent a poor connection between the lower metal layer of a terminal and a TAB caused by conductive particles of an ACF remaining on an organic film, and contact holes that make connections between an upper layer transparent electrode of a terminal and a lower metal layer are formed by a plurality of fine via holes, so that sufficient conductive particles of the ACF remain on the upper transparent electrode and a good connection is made to TAB connection lines.
Abstract:
An active matrix substrate forms a liquid crystal display panel together with a counter substrate and liquid crystal filling a gap therebetween, and color filters are covered with an overcoat layer of photo-sensitive acrylic resin, wherein column spacers of the photo-sensitive acrylic resin project from the overcoat layer so that the column spacers are hardly separated from the overcoat layer in a rubbing for producing an orientation layer.
Abstract:
The thickness of a liquid crystal layer of a reflection type or semi-transparent type liquid crystal display device and the driving voltage are determined in such a manner that the reflectance of the liquid crystal layer to the blue light component has a maximum value; the values of reflectance to the red, green and blue light components are close to one another in the range lower than the driving voltage; the reflection type or semi-transparent type liquid crystal display device produces a full color image in the driving voltage range where the values of reflectance are close to one another so that the color irregularity and tint irregularity are suppressed.
Abstract:
In a transflective type LCD provided with a transparent region and a reflection region in each pixel, when an irregular film 11 is formed on an active matrix substrate 12 to form irregularities of a reflection electrode film 6, the irregular film 11 is specifically formed to almost the same film thickness in both the transparent region and the reflection region to provide substantially the same inter-substrate gap in these two regions so that they may have almost the same V-T characteristics and also the reflection electrode film 6 made of Al/Mo is formed so as to overlap with a transmission electrode film 5 made of ITO all around an outer periphery of the transmission electrode film 5 by a width of at least 2 nullm, thus suppressing electric erosion from occurring between the ITO and Al substances at the edge of the transmission electrode film 5.
Abstract:
Color filters of R, G and B consisting of a negative resist film are simultaneously exposed by use of a photomask intercepting light for the regions connected to the transparent pixel electrodes after the source electrodes. Then, the color filters are simultaneously developed. Since the color filters consist of a negative resist film, the regions of the color filters corresponding to the light-intercepted regions, that is, the regions connected to the transparent pixel electrodes after the source electrodes are removed by the development, so that openings are formed.
Abstract:
In an active matrix type liquid crystal display device comprising a TFT having gate lines and data lines formed in a matrix manner and being connected to a source line, a contact hole for connecting the source line with a pixel electrode is formed in a position overlapping a disclination line. The contact hole is formed in a position overlapping a capacitance portion of the gate line. The gate line and the source line are provided to oppose to each other, and electrostatic capacitance is stored therebetween.
Abstract:
In a liquid crystal display device comprising a first substrate 101 having a color filter, a second substrate 131 and a liquid crystal layer disposed therebetween, a color filter layer 110 is disposed on a protection film 108 of a thin film transistor formed on the first substrate 101 so as to be partitioned by a light shielding portion 111, and a common electrode 103 is disposed thereon. A pixel electrode to be connected to a source electrode 107 is disposed through a through hole formed in an overcoat layer (interlayer separation film) 112. On the first substrate below the color filter layer 110 are provided plural scan signal electrodes, plural video signal electrodes crossing the scan signal electrodes in a matrix form, plural thin film transistors formed in association with the crossing points between the electrodes. Each pixel is provided with a common electrode 103 which is connected over plural pixels through a common electrode wire to supply reference potential, and a pixel electrode 114 which is connected to the corresponding thin film transistor and disposed so as to confront the common electrode in the pixel area.
Abstract:
There is provided a liquid crystal display device including: a switching device having a first electrode formed on a place near a crossing part of a scanning line with a signal line and connected to the scanning line to become a gate, a second electrode connected to the signal line to become a drain or a source, a third electrode connected to the pixel electrode to become the source or the drain and switching the display signal to feed the corresponding pixel electrode by the scanning signal; an electrode for an auxiliary capacitor, located in a place opposite to the pixel electrode to define the auxiliary capacitor; wherein in a same pixel, the second and third electrodes are formed in a layer different from the first electrode through a first insulation film, the pixel electrode is formed in top of the first, second, and third electrodes through a second insulation film, the electrode for an auxiliary capacitor, is formed in the same layer as the first electrode and is electrically connected to the adjacent scanning line.
Abstract:
First and second transparent substrates which are arranged to face each other are provided to a color liquid crystal display panel. A liquid crystal layer is provided between the first and the second transparent substrates, A plurality of thin film transistors are provided on the first transparent substrate. An insulation film provided on the first transparent substrate so as to cover the thin film transistors. A color filter which includes first to third color layers stacked on the insulation layer is provided. A contacting color layer is provided on the insulation film in a region above the thin film transistors. The contacting color layer has at least one color layer selected from a group of composed of the first to third color layers. A black matrix is provided on the contacting color layer. The black matrix has opening portions for transmitting light from the color filter.