Abstract:
A method implemented in a base station used in a wireless communications system where different antenna arrays are employed for transmissions to different co-scheduled users in a cell is disclosed. The method includes configuring multiple channel state information (CSI) processes for a user equipment (UE), and configuring, for the UE, a plurality of non-zero power (NZP) CSI reference signal (RS) resources, each of which is associated with an antenna array. Other apparatuses, systems, and methods also are disclosed.
Abstract:
A method implemented in a base station used in a wireless communications system is disclosed. The method comprises receiving, from a user equipment, rank indication (RI), a first precoding matrix indicator (PMI), and a second PMI (codebook index i2), wherein values 0-15 are assigned to the second PMI IPMI2 for RI=1 and values 0-3 are assigned to the second PMI IPMI2 for each of RI=2, RI=3, and RI=4, and wherein codebook index i2 comprises IPMI2 for RI=1. Other methods, apparatuses, and systems also are disclosed.
Abstract:
A method implemented in a mobile communications network supporting coordinated multiple point transmission and reception (CoMP) is disclosed. The method includes transmitting, to a user equipment (UE), data in a physical downlink shared channel (PDSCH), and transmitting a reference signal to the UE, wherein a union of resource elements (REs) allocated for reference signals transmitted from a subset of a plurality of transmission points (TPs) in a CoMP set are excluded from resource mapping for transmitting the data to the UE. Other methods, systems, and apparatuses also are disclosed.
Abstract:
A method implemented in a user equipment used in a multi-user multiple input multiple output (MU-MIMO) wireless communications system is disclosed. The method includes receiving from a base station an indication of a first modulation type for the user equipment, receiving a first data signal for the user equipment, receiving a second data signal for a co-scheduled user equipment, where a second modulation type for the co-scheduled user equipment is unknown to the user equipment, and deciding the second modulation type. Other methods, systems, and apparatuses also are disclosed.
Abstract:
A communications method implemented in a transmission point (TP) used in a coordinated multipoint transmission and reception (CoMP) system is disclosed. The communications method comprises transmitting, to a user equipment (UE), attributers for up to four indicators indicating at least physical downlink shared channel (PDSCH) resource element (RE) mapping, and transmitting, to the UE, one of the four indicators, each of which is conveyed in 2 bits, wherein the four indicators comprises ‘00’, ‘01’, ‘10’, and ‘11’ corresponding to a first set, a second set, a third set, and a fourth set of parameters, respectively. Other methods, apparatuses, and systems are also disclosed.
Abstract:
A method and system are provided. The method includes providing transmit precoders for a multiple-input and multiple-output communication system having a plurality of transmit antennas. The plurality of transmit antennas are for forming, using precoding, a plurality of channels such that each of the plurality of channels are configurable to serve a respective one of a plurality of users. The providing step includes imposing a respective average transmit antenna power constraint on each of the plurality of transmit antennas. The providing step further includes determining a diagonal precoder responsive to applying column scaling to a downlink channel matrix having a plurality of rows and a plurality of columns. The providing step additionally includes generating, from the diagonal precoder, a weighted precoder in accordance with the respective average antenna power constraint by optimizing a weighted sum-rate obtained upon transmitting respective signals over the plurality of channels.
Abstract:
A method implemented in a base station used in a wireless communications system is disclosed. The method comprises receiving, from a user equipment, rank indication (RI), a first precoding matrix indicator (PMI), and a second PMI, the RI and the first PMI being jointly encoded, wherein 5 bits are used for transmission of the jointly encoded RI and first PMI, and wherein first 8 values of values expressed by the 5 bits are used for RI=1, second 8 values of the values expressed by the 5 bits are used for RI=2, a third value of the values expressed by the 5 bits is used for RI=3, a fourth value of the values expressed by the 5 bits is used for RI=4, and remaining 14 values of the values expressed by the 5 bits are reserved. Other methods, apparatuses, and systems also are disclosed.
Abstract:
A method implemented in a base station used in a wireless communications system is disclosed. The method comprises having 1-layer, 2-layer, 3-layer, and 4-layer codebooks for 4 transmit antenna (4TX) transmission, each codebook including a plurality of precoding matrices, precoding data with one of the plurality of precoding matrices, and transmitting, to a user equipment, the precoded data, wherein each of the 1-layer and 2-layer codebooks comprises a first codebook and a second codebook, and wherein each precoding matrix in the first codebook comprises a first index and a second index. Other apparatuses, systems, and methods also are disclosed.
Abstract:
A method implemented in a base station used in a mobile communications system is disclosed. The method includes configuring for a user equipment (UE) a channel state information (CSI) process for multi-user (MU) multiple-input and multiple-output (MIMO), the CSI process for MU-MIMO being associated with a channel part and an interference part, and according to the interference part, configuring the UE to measure or estimate inter-cell interference (ICI) and to compute or estimate intra-cell interference. Other apparatuses, systems, and methods also are disclosed.
Abstract:
DFT-based channel estimation methods and systems are disclosed. One system includes an inverse discrete Fourier transform module, a noise power estimator, a noise filter and a discrete Fourier transform module. The inverse discrete Fourier transform module is configured to determine time domain estimates by applying an inverse discrete Fourier transform to initial channel estimates computed from pilot signals. Additionally, the noise power estimator is configured to estimate noise power by determining and utilizing time domain samples that are within a vicinity of sinc nulls of the time domain estimates. The noise filter is configured to filter noise from the time domain estimates based on the estimated noise power to obtain noise filtered time domain estimates. Further, the discrete Fourier transform module is configured to perform a discrete Fourier transform on the noise filtered time domain estimates to obtain frequency domain channel estimates for channels on which pilot signals are transmitted.