Abstract:
A thermostat for controlling an HVAC system is described, the thermostat having a user interface that is visually pleasing, approachable, and easy to use while also providing ready access to, and intuitive navigation within, a menuing system capable of receiving a variety of different types of user settings and/or control parameters. For some embodiments, the thermostat comprises a housing, a ring-shaped user-interface component configured to track a rotational input motion of a user, a processing system configured to identify a setpoint temperature value based on the tracked rotational input motion, and an electronic display coupled to the processing system. An interactive thermostat menuing system is accessible to the user by an inward pressing of the ring-shaped user interface component. User navigation within the interactive thermostat menuing system is achievable by virtue of respective rotational input motions and inward pressings of the ring-shaped user interface component.
Abstract:
A thermostat may include a memory and a processing system. The processing system may operate by determining a set of wake-up conditions for the processor to enter into a second operating state from a first operating state, the set of wake-up conditions including at least one threshold value associated with at least one environmental condition; causing the set of wake-up conditions to be stored in the memory; operating in a first mode in which the processor is in the first operating state during a time interval subsequent to causing the set of wake-up conditions to be stored in the memory; determining, while the processor is in the first operating state, whether at least one of the set of wake-up conditions has been met; and then operating in a second mode in which the processor is in the second operating state.
Abstract:
A thermostat for controlling an HVAC system is described, the thermostat having a user interface that is visually pleasing, approachable, and easy to use while also providing ready access to, and intuitive navigation within, a menuing system capable of receiving a variety of different types of user settings and/or control parameters. For some embodiments, the thermostat comprises a housing, a ring-shaped user-interface component configured to track a rotational input motion of a user, a processing system configured to identify a setpoint temperature value based on the tracked rotational input motion, and an electronic display coupled to the processing system. An interactive thermostat menuing system is accessible to the user by an inward pressing of the ring-shaped user interface component. User navigation within the interactive thermostat menuing system is achievable by virtue of respective rotational input motions and inward pressings of the ring-shaped user interface component.
Abstract:
Systems and methods are provided for efficiently controlling energy-consuming systems, such as heating, ventilation, or air conditioning (HVAC) systems. For example, an electronic device used to control an HVAC system may encourage a user to select energy-efficient temperature setpoints. Based on the selected temperature setpoints, the electronic device may generate or modify a schedule of temperature setpoints to control the HVAC system.
Abstract:
A thermostat for controlling an HVAC system is described, the thermostat having a user interface that is visually pleasing, approachable, and easy to use while also providing ready access to, and intuitive navigation within, a menuing system capable of receiving a variety of different types of user settings and/or control parameters. For some embodiments, the thermostat comprises a housing, a ring-shaped user-interface component configured to track a rotational input motion of a user, a processing system configured to identify a setpoint temperature value based on the tracked rotational input motion, and an electronic display coupled to the processing system. An interactive thermostat menuing system is accessible to the user by an inward pressing of the ring-shaped user interface component. User navigation within the interactive thermostat menuing system is achievable by virtue of respective rotational input motions and inward pressings of the ring-shaped user interface component.
Abstract:
Methods and devices for controlling a heating, ventilation, and air conditioning (HVAC) system by a thermostat are provided. Input can be received from a user via a thermostat, the input being indicative of an adjustment of an HVAC-related setting. On a real-time basis, the HVAC-related setting that is being adjusted can be compared against a feedback criterion designed to indicate a circumstance under which feedback is to be presented to the user. The circumstance can be indicative of an achievement of a HVAC-related setting of a predetermined responsibility level with respect to an energy usage of the HVAC system. Upon a real-time determination that the feedback criterion is satisfied, visual feedback can be caused to be presented to the user in real-time. The real-time feedback can include a visual icon having a visual appeal corresponding to a desirability of the satisfaction of the feedback criterion.
Abstract:
A thermostat for controlling an HVAC system is described, the thermostat having a user interface that is visually pleasing, approachable, and easy to use while also providing ready access to, and intuitive navigation within, a menuing system capable of receiving a variety of different types of user settings and/or control parameters. For some embodiments, the thermostat comprises a housing, a ring-shaped user-interface component configured to track a rotational input motion of a user, a processing system configured to identify a setpoint temperature value based on the tracked rotational input motion, and an electronic display coupled to the processing system. An interactive thermostat menuing system is accessible to the user by an inward pressing of the ring-shaped user interface component. User navigation within the interactive thermostat menuing system is achievable by virtue of respective rotational input motions and inward pressings of the ring-shaped user interface component.
Abstract:
Systems and methods are described for attributing a primary causative agent for HVAC system usage being above or below an average, the HVAC system being controlled by a self-programming network-connected thermostat. Systems and method are also described interactively and graphically displaying schedule information to a user of an HVAC system controlled by a network-connected thermostat. The displayed information can include indications of the manner in which one or more setpoints was created or last modified. Historical HVAC performance information can also be displayed that can include details of certain energy-effecting events such as setpoint changes, adaptive recovery, as well as automatic and manually set non-occupancy modes.
Abstract:
A thermostat includes at least a housing, a user interface, a memory, an environmental sensor, and a processing system. The processing system may be configured to operate in a wake state and a sleep state by determining wake-up conditions upon which the processor is to enter into the wake state from the sleep state that includes a threshold value associated with an environmental condition sensed by the environmental sensor, causing the wake-up conditions to be stored in the memory, operating in the sleep state during a time interval subsequent to causing the wake-up conditions to be stored in the memory, determining whether at least one of the wake-up conditions has been met, and operating in the wake state upon a determination that the at least one wake-up condition has been met.
Abstract:
Systems and methods are provided for efficiently controlling energy-consuming systems, such as heating, ventilation, or air conditioning (HVAC) systems. For example, an electronic device used to control an HVAC system may encourage a user to select energy-efficient temperature setpoints. Based on the selected temperature setpoints, the electronic device may generate or modify a schedule of temperature setpoints to control the HVAC system.