Abstract:
A method is provided for separation of a wafer into individual ICs. Channels are formed in the one or more metallization layers on a front-side of the wafer along respective lanes. The lanes are located between the ICs and extend between a front-side of the metallization layers and a backside of the substrate. A backside of the substrate is thinned, and laser pulses are applied via the backside of the substrate to change the crystalline structure of the silicon substrate along the lanes. The plurality of portions in the silicon substrate and the channels are configured to propagate cracks in the silicon substrate along the lanes during expansion of the IC wafer. The channels assist to mitigate propagation of cracks outside of the lanes in the metallization layers during expansion of the IC wafer.
Abstract:
Consistent with an example embodiment, there is a method for preparing an integrated circuit (IC) device from a wafer substrate, the wafer substrate having a top-side surface with a plurality of active device die separated by saw lanes and an opposite under-side surface. The method comprises coating the under-side surface of the wafer substrate with a resilient coating, locating the position of the saw lanes from the underside surface, blade dicing trenches in the resilient material to expose under-side bulk material in the position of saw lanes, and plasma etching through the trenches to remove the exposed under-side bulk material.
Abstract:
An apparatus, device and method for wafer dicing is disclosed. In one example, the apparatus discloses: a wafer holding device having a first temperature; a die separation bar moveably coupled to the wafer holding device; and a cooling device coupled to the apparatus and having a second temperature which enables the die separation bar to fracture an attachment material in response to movement with respect to the wafer holding device. In another example, the method discloses: receiving a wafer having an attachment material applied to one side of the wafer; placing the wafer in a holding device having a first temperature; urging a die separation bar toward the wafer; and cooling the attachment material to a second temperature, which is lower than the first temperature, until the attachment material fractures in response to the urging.
Abstract:
Consistent with an example embodiment, a method for preparing integrated circuit (IC) device die from a wafer substrate having a front-side with active devices and a back-side, comprises mounting the front-side of the wafer onto protective foil. A laser is applied to saw lane areas on the backside of the wafer, at a first focus depth to define a modification zone; the modification zone defined at a pre-determined depth within active device boundaries and the active device boundaries defined by the saw lane areas. The protective foil is stretched to separate IC device die from one another and expose active device side-walls. With dry-etching of the active device side-walls, the modification zone is substantially removed.
Abstract:
Consistent with an example embodiment, there is a method for assembling a wafer level chip scale processed (WLCSP) wafer; The wafer has a topside surface and an back-side surface, and a plurality of device die having electrical contacts on the topside surface. The method comprises back-grinding, to a thickness, the back-side surface the wafer. A protective layer of a thickness is molded onto the backside of the wafer. The wafer is mounted onto a sawing foil; along saw lanes of the plurality of device die, the wafer is sawed, the sawing occurring with a blade of a first kerf and to a depth of the thickness of the back-ground wafer. Again, the wafer is sawed along the saw lanes of the plurality of device die, the sawing occurring with a blade of a second kerf, the second kerf narrower than the first kerf, and sawing to a depth of the thickness of the protective layer. The plurality of device die are separated into individual device die. Each individual device die has a protective layer on the back-side, the protective layer having a stand-off distance from a vertical edge of the individual device die.
Abstract:
Consistent with an example embodiment, there is a method for assembling a wafer level chip scale processed (WLCSP) device from a wafer substrate, the method comprises grinding the back-side of the wafer substrate to a prescribed thickness. A plurality of trenches is sawed along a plurality of device die boundaries on a back-side surface of the wafer, the trenches having a bevel profile. The plurality of trenches is etched until the bevel profile of the plurality of trenches is rounded.