Abstract:
Systems, methods, and devices to fabricate one or more device components are disclosed. An example method includes fabricating one or more subject specific device components generated from receiving one or more images of one or more features of the first eye of the subject; designing a three dimensional virtual geometric model of the ophthalmic device using the one or more images; generating a plurality of virtual cross-sections of the three-dimensional virtual geometric model, wherein the cross-sections are defined by a set of physical parameters derived from the three-dimensional model; and fabricating the one or more subject specific features using the plurality of virtual cross-sections of the three dimensional model to direct an additive manufacturing method.
Abstract:
An optical coherence tomography imaging system is disclosed, including: a light source to generate a radiation beam; a pair of photodetectors to acquire data of the radiation beam; a coupler to direct portions of the beam to a sample arm and a reference arm, the coupler to combine light from the sample arm and the reference arm, the combined light to be split into portions to be detected by the pair of photodetectors; and a processor to measure and compare noise profiles of the data and to generate an image using the data, and the noise profile comparison.
Abstract:
Provided herein are methods, compositions, devices, and systems for the 3D printing of biomedical implants. In particular, methods and systems are provided for 3D printing of biomedical devices (e.g., endovascular stents) using photo-curable biomaterial inks (e.g., or methacrylated poly(diol citrate)).
Abstract:
Systems and methods to generate spatially coherent electromagnetic radiation are disclosed. An example method includes receiving two or more incident wavelengths of electromagnetic radiation; applying the two or more incident wavelengths of electromagnetic radiation to an array of features; generating two or more spatially coherent optical resonating modes through the interaction of the one or more incident wavelengths of electromagnetic radiation and the array of features; and coupling the two or more spatially coherent optical resonating modes to two or more spatially coherent propagating wavelengths of electromagnetic radiation, wherein the spatially coherent propagating wavelengths of electromagnetic radiation are identical to the two or more incident wavelengths of electromagnetic radiation. An example system includes an array of features configured to receive wavelengths of electromagnetic radiation; medium(s) configured to generate spatially coherent optical resonating mode(s); and medium(s) configured to generate spatially coherent propagating wavelength(s) of electromagnetic radiation.
Abstract:
Provided herein are methods, compositions, devices, and systems for the 3D printing of biomedical implants. In particular, methods and systems are provided for 3D printing of biomedical devices (e.g., endovascular stents) using photo-curable biomaterial inks (e.g., or methacrylated poly(diol citrate)).
Abstract:
Photonic devices are provided comprising a photoactive layer and at least one additional layer, wherein a surface of the photoactive layer or a surface of the at least one additional layer has imprinted thereon a quasi-random pattern of nanostructures corresponding to a quasi-random pattern of nanostructures defined in a recording layer of a pre-written optical media disc. Methods of patterning a layer of a photonic device are also provided.
Abstract:
Certain examples provide a transparent ultrasonic transducer including a transparent substrate and a transparent optical resonator positioned on the transparent substrate. The transparent optical resonator is to facilitate excitation of a biological sample and to receive acoustic emission from the biological sample triggered by the excitation, for example.Certain examples provide a ring resonator ultrasonic detector including a microscope cover slide. The microscope cover sheet includes a substrate and a ring optical resonator positioned on the substrate. The example ring optical resonator is to facilitate illumination of a biological sample and to receive acoustic emission from the biological sample in response to the illumination.
Abstract:
Certain examples provide a transparent ultrasonic transducer including a transparent substrate and a transparent optical resonator positioned on the transparent substrate. The transparent optical resonator is to facilitate excitation of a biological sample and to receive acoustic emission from the biological sample triggered by the excitation, for example.Certain examples provide a ring resonator ultrasonic detector including a microscope cover slide. The microscope cover sheet includes a substrate and a ring optical resonator positioned on the substrate. The example ring optical resonator is to facilitate illumination of a biological sample and to receive acoustic emission from the biological sample in response to the illumination.
Abstract:
Provided herein photo-reactive inks, thermal-curable materials and objects (e.g., medical implants, scaffolds, devices, etc.) made therefrom, and methods of preparation and use thereof.
Abstract:
A system for additive manufacturing includes a multi-material vat that includes a plurality of resins. The system also includes a robotic arm that provides at least six degrees of freedom of motion, where the robotic arm moves with the six degrees of freedom to draw resin out of the multi-material vat to form an object. The system further comprises a processor operatively coupled to the robotic arm and configured to control movement of the robotic arm in the six degrees of freedom.