Abstract:
A clock and data recovery circuit with jitter tolerance enhancement is provided. The CDR circuit includes: a bang-bang phase detector, a digital filter, a digitally controlled oscillator, and an adaptive loop gain control circuit. The CDR circuit detects a loop bandwidth variation and adjusts the loop bandwidth of CDR circuit by adjusting proportional path and integral path gain factors of the digital filter of the CDR circuit. The loop gain controller uses two methods to adjust the loop gain in CDR circuit: bang-bang adjusting method and linear adjusting method.
Abstract:
In the disclosure, an electrostatic discharge (ESD) protection circuit is coupled between a first power rail and a second power rail to discharge any ESD stress. The ESD protection circuit includes a detection circuit, a triggering circuit, and a dual silicon controlled rectifier (DSCR) device. When an ESD stresses is being applied to the first or second power rail, the detection circuit may first detect the ESD stresses and output a detection signal to the triggering circuit. The triggering circuit generates a triggering signal based on the detection signal and the polarity of the ESD stress. Then, the DSCR device is symmetrically triggered based on the triggering signal received at a common node between at least two transistors of the same type. The exemplary ESD protection circuit may be implemented in nanoscale manufactured integrated circuit and achieve good ESD robustness while maintaining low standby leakage current and relatively small silicon footprint.
Abstract:
An electronic static discharge protection apparatus provided. A plurality of ESD circuits serially coupled between a pad and a internal circuit, a first stage ESD circuit includes a ESD element directly coupled to the pad, and a last stage ESD circuit includes an inductive element directly coupled to the internal circuit, so as to improve electronic discharge protecting ability of the ESD protection apparatus and increase circuit operation bandwidth without signal loss attenuation.
Abstract:
In the disclosure, an electrostatic discharge (ESD) protection circuit is coupled between a first power rail and a second power rail to discharge any ESD stress. The ESD protection circuit includes a detection circuit, a triggering circuit, and a dual silicon controlled rectifier (DSCR) device. When an ESD stresses is being applied to the first or second power rail, the detection circuit may first detect the ESD stresses and output a detection signal to the triggering circuit. The triggering circuit generates a triggering signal based on the detection signal and the polarity of the ESD stress. Then, the DSCR device is symmetrically triggered based on the triggering signal received at a common node between at least two transistors of the same type. The exemplary ESD protection circuit may be implemented in nanoscale manufactured integrated circuit and achieve good ESD robustness while maintaining low standby leakage current and relatively small silicon footprint.
Abstract:
A control method utilized in a clock data recovery device supporting a plurality of frequency bands, for controlling the clock data recovery device to select an operating frequency band from the plurality of frequency bands and to generate a recovery clock for generating retimed data, includes receiving a serial data stream with a data frequency; making each frequency band of the plurality of frequency bands correspond to a plurality of frequency band groups, wherein each frequency band group includes at least one frequency band and corresponds to different frequency ranges; selecting a frequency band group from the plurality of frequency band groups as a coarse-tuned frequency band group according to the data frequency and a locking voltage range; and selecting a frequency band from the plurality of frequency bands according to the data frequency, the locking voltage range and the coarse-tuned frequency band group for generating the recovery clock.
Abstract:
A reference voltage generator includes a detecting voltage provider, a comparator, and a core circuit. The detecting voltage provider provides a detecting voltage with a first voltage level corresponding to a voltage coefficient. The comparator compares the first voltage level of the detecting voltage with a plurality of sampled amplitudes of an input signal to respectively generate a plurality of comparison results. The core circuit is used to: collect a plurality of first comparison results associated with a current received bit of a preset value from the comparison results; take the voltage coefficient as a first boundary voltage coefficient in response to the first comparison results satisfying a first condition; take the voltage coefficient as a second boundary voltage coefficient in response to the first comparison results satisfying a second condition. The reference circuit generates a reference voltage according to the first and second boundary voltage coefficients.
Abstract:
The disclosure provides a sensing apparatus and an operation method thereof. The sensing apparatus includes a sensing circuit, an analog-to-digital converter (ADC) circuit, a disturbing circuit and an output circuit. The sensing circuit is configured to output a sensing signal indicating a sensing result of a sensing line of the display panel. The ADC circuit is coupled to the sensing circuit to receive the sensing signal and outputs sensing data related to the sensing signal. The disturbing circuit is coupled to the ADC circuit to receive the sensing data and generates a time-variant disturbance component to disturb the sensing data to generate disturbed data. The output circuit is coupled to the disturbing circuit to receive the disturbed data.
Abstract:
A silicon controlled rectifier including a semiconductor substrate, first and second semiconductor wells, first and second semiconductor regions, third and fourth semiconductor regions and a silicide layer is provided. The first and the second semiconductor wells are formed in the semiconductor substrate. The first and the second semiconductor regions are respectively formed in the first and the second semiconductor wells in spaced apart relation. The third and the fourth semiconductor regions are respectively formed in the first and the second semiconductor wells. The silicide layer is formed on the third and the fourth semiconductor regions. The silicon controlled rectifier is at least suitable for high frequency circuit application. The silicon controlled rectifier has a relatively low trigger voltage, a relatively high electrostatic discharge level, and a relatively low capacitance.
Abstract:
A control method utilized in a clock data recovery device supporting a plurality of frequency bands, for controlling the clock data recovery device to select an operating frequency band from the plurality of frequency bands and to generate a recovery clock for generating retimed data, includes receiving a serial data stream with a data frequency; making each frequency band of the plurality of frequency bands correspond to a plurality of frequency band groups, wherein each frequency band group includes at least one frequency band and corresponds to different frequency ranges; selecting a frequency band group from the plurality of frequency band groups as a coarse-tuned frequency band group according to the data frequency and a locking voltage range; and selecting a frequency band from the plurality of frequency bands according to the data frequency, the locking voltage range and the coarse-tuned frequency band group for generating the recovery clock.