Abstract:
An example current generator may include a low dropout regulator (LDO) coupled to receive a reference voltage and provide a reference current in response, where the LDO adjusts a current level of the current reference in response to a calibration signal. A current controlled oscillator coupled to receive a reference current copy from the LDO and generate an oscillating signal in response, where a period of the oscillating signal is based at least in part on a level of the reference current copy. A pulse generator coupled to provide an adjustable pulse signal. A counter coupled to determine a number of periods of the oscillating signal occurring during a duration of the pulse signal, and provide a control signal indicative of such, and a digital calibration circuit coupled to receive the control signal and provide the calibration signal to the LDO in response.
Abstract:
Apparatuses and methods for reducing vertical fixed pattern noise in imaging systems are disclosed herein. An example apparatus may include an analog dithering circuit coupled to randomly add an offset voltage to a first reference voltage in response to a random binary signal during an analog to digital conversion operation, and a ramp generator circuit coupled to receive the first reference voltage, and provide a second reference voltage in response, wherein the randomly added offset voltage to the first reference is also present in the second reference voltage.
Abstract:
A readout circuit for use in an image sensor includes a system ramp generator coupled to generate a system ramp signal. A plurality of analog-to-digital converters is coupled to a plurality of column bitlines from a pixel array to receive corresponding analog column image signals. An isolation ramp buffer is coupled between the system ramp generator and the analog-to-digital converters. The isolation ramp buffer includes a single input to receive the system ramp signal, and a plurality of isolated outputs. Each of the isolated outputs is coupled to provide an isolated column ramp signal to a corresponding analog-to-digital converter. Each of the of analog-to-digital converters is coupled to generate a corresponding digital column image signal in response to the corresponding analog column image signal and corresponding isolated column ramp signal.
Abstract:
A power supply noise measurement circuit includes a multiphase filter coupled to receive a power supply signal. The multiphase filter is coupled to output a first filtered power supply signal for a first phase, and a second filtered power supply signal for a second phase. A multiphase amplifier is coupled to the multiphase filter to sample offset voltages in response to the first filter power supply signal during the first phase to set up DC operation points in the multiphase amplifier, and generate an amplified power supply noise signal during the second phase. An overshoot detector is coupled to the multiphase amplifier to detect overshoot events in the amplified power supply noise signal, and an undershoot detector is coupled to the multiphase amplifier to detect undershoot events in the amplified power supply noise signal.
Abstract:
A pixel cell includes a photodiode disposed in a semiconductor material to accumulate image charge in response to light. A global shutter transistor is disposed in the semiconductor material and is selectively resets the image charge in the photodiode in response to a global shutter control signal. A global shutter control signal generator circuit is coupled to generate the global shutter control signal to have a first value, a second value, and a third value. The first value of the global shutter control signal is coupled to turn on the global shutter transistor to reset the photodiode. The third value of the global shutter control signal is coupled to control the global shutter transistor to be in a low leakage off mode. The second value of the global shutter control signal is between the first and third values and is turns off the global shutter transistor.
Abstract:
A ramp generator for use in readout circuitry includes an integrator coupled to receive a ramp generator input reference signal to generate a reference ramp signal coupled to be received by an analog to digital converter. A power supply compensation circuit that is coupled to generate the ramp generator input reference signal includes a delay circuit including a variable resistor and a filter capacitor coupled to receive a power supply signal. The variable resistor is tuned to match a delay ripple from the power supply to a bitline output. A capacitive voltage divider is coupled to the delay circuit to generate the ramp generator input reference signal. The capacitive voltage divider includes a first variable capacitor coupled to a second variable capacitor that are tuned to provide a capacitance ratio that matches a coupling ratio from the power supply to the bitline output.
Abstract:
An image sensor read out circuit includes a first current mirror circuit in which a second current conducted through a second current path is controlled in response to a first current conducted through the first current path. The second current is conducted through an amplifier transistor of a pixel circuit. A first current source is coupled to the first current path to provide a substantially constant current component of the first current. A second current source is coupled to a power supply rail of the pixel circuit and coupled to the first current path to provide a ripple current component of the first current. The ripple current component provided by the second current source is responsive to a ripple in the power supply rail. The first current is responsive to a sum of the currents from the first and second current sources.
Abstract:
A power supply noise measurement circuit includes a multiphase filter coupled to receive a power supply signal. The multiphase filter is coupled to output a first filtered power supply signal for a first phase, and a second filtered power supply signal for a second phase. A multiphase amplifier is coupled to the multiphase filter to sample offset voltages in response to the first filter power supply signal during the first phase to set up DC operation points in the multiphase amplifier, and generate an amplified power supply noise signal during the second phase. An overshoot detector is coupled to the multiphase amplifier to detect overshoot events in the amplified power supply noise signal, and an undershoot detector is coupled to the multiphase amplifier to detect undershoot events in the amplified power supply noise signal.
Abstract:
A readout circuit for use in an image sensor includes a sense amplifier circuit coupled to a bitline to sense analog image data from a pixel cell of the image sensor. An analog to digital converter is coupled to the sense amplifier circuit to convert the analog image data to digital image data. A ramp generator circuit is coupled to generate a first ramp signal. The analog to digital converter is coupled to generate the digital image data in response to the analog image data and the first ramp signal. A first capacitive voltage divider is coupled to the ramp generator. The first capacitive voltage divider is coupled to reduce an output voltage swing of the first ramp signal coupled to be received by the analog to digital converter to reduce noise in the first ramp signal.
Abstract:
An image sensor pixel noise measurement circuit includes a pixel array on an integrated circuit chip. The pixel array includes a plurality of pixels including a first pixel to output a first image data signal, and a second pixel to output a second image data signal. A noise amplification circuit on the integrated circuit chip is coupled to receive the first and second image data signals from the pixel array. The noise amplification circuit is coupled to output an amplified differential noise signal in response to the first and second image data signals received from the pixel array. A fast Fourier transform (FFT) analysis circuit on the integrated circuit chip is coupled to transform the amplified differential noise signal output by the noise amplification circuit from a time domain to a frequency domain to analyze a pixel noise characteristic of the pixel array.