Abstract:
A programmable sinusoidal oscillator circuit is a sinusoidal oscillator circuit that includes a current-feedback operational-amplifier (CFOA) operably connected to two operational transconductance amplifiers (OTAs), two capacitors and a resistor. The programmable sinusoidal oscillator circuit enjoys electronic orthogonal tuning of the frequency and the condition of oscillation by adjusting the biasing currents (voltages) of the OTAs, as well as providing a low output impedance.
Abstract:
An odd number of inverter circuits are connected with each other so as to form a ring. A first current-control element is provided between an oscillation signal line which is used for connecting adjacent inverter circuits and a power-source-potential point, a current flowing through the first current-control element varying by a first control signal. A second current-control element is provided between the oscillation signal line and a ground point, a current flowing through the second current-control element varying by a second control signal.
Abstract:
A digitally controlled oscillator includes an emitter coupled multivibrator with weighted current sources driving the timing capacitor of the multivibrator the weighted current sources being driven by a binary input signal to produce an output frequency corresponding to the binary weight of the input signal. The multivibrator produces output waveforms of either square, triangular or sine waveshapes. The sine wave output is accomplished by the use of anti-parallel diodes in conjunction with the triangular wave output circuitry.
Abstract:
A wideband Voltage Controlled Oscillator (VCO) uses a resonant circuit tunable over a wide range of resonant frequencies. The resonant circuit includes voltage variable elements such that the resonant frequency, and thus the frequency of oscillation, may be electronically tuned. The voltage variable elements are arranged such that multiple control voltages determine the resonant frequency. A first control voltage is applied to a first set of tuning elements and operates as a coarse control of the resonant frequency. A second control voltage is applied to a second set of tuning elements and operates as a fine control of the resonant frequency. Using multiple control voltages on multiple elements allows for a wideband VCO while maintaining a low VCO gain.
Abstract:
A multiple-frequency local oscillator for providing an LO signal at one of a multiple of predetermined resonant frequencies associated with a number of resonators is disclosed. It includes a number of LO input ports for coupling to a plurality of resonators, respectively, each resonator having a predetermined resonant frequency; the local oscillator is controlled to selectively provide at its LO output port an output LO signal at any one of the resonant frequencies.
Abstract:
An oscillating signal generator for generating an oscillating signal having a variable oscillation frequency that can be near the unity gain frequency of the gain devices within the oscillating signal generator (Generation of High-Frequency Oscillating Signal Techniques, "GHOST"). Two gain stages, each with a respective effective resistance R.sub.eff, an emitter load capacitance C.sub.E, and a respective gain device having a unity gain frequency .omega..sub.T, are cascaded and configured to provide a respective gain with a phase at substantially 180.degree.. In that case, the oscillation frequency, of the oscillating signal generated by the oscillating signal generator of the present invention, .omega.=�.omega..sub.T /(R.sub.eff C.sub.E)!.sup.1/2. A feedback with a feedback gain is provided between the output to the input of the cascade of the two gain stages. The feedback gain is designed such that a product of the feedback gain and the gain through the cascade of the two gain stages is substantially one. The oscillation frequency of the oscillating signal generated by the oscillator can be varied by a corresponding variation to .omega..sub.T and/or R.sub.eff. Alternatively, the oscillation frequency can be substantially fixed at a predetermined resonance frequency determined by a frequency determining network operatively connected to the cascade of the two gain stages. The oscillating signal generator of the present invention which can generate sine waves can be implemented with circuit elements that are easily fabricated on-chip within a monolithic integrated circuit. In addition, because oscillation frequencies near the unity gain frequency of the gain devices can be achieved, higher frequencies for a given power dissipation or lower power dissipation for a given frequency can be obtained.
Abstract:
An example current generator may include a low dropout regulator (LDO) coupled to receive a reference voltage and provide a reference current in response, where the LDO adjusts a current level of the current reference in response to a calibration signal. A current controlled oscillator coupled to receive a reference current copy from the LDO and generate an oscillating signal in response, where a period of the oscillating signal is based at least in part on a level of the reference current copy. A pulse generator coupled to provide an adjustable pulse signal. A counter coupled to determine a number of periods of the oscillating signal occurring during a duration of the pulse signal, and provide a control signal indicative of such, and a digital calibration circuit coupled to receive the control signal and provide the calibration signal to the LDO in response.
Abstract:
A wideband Voltage Controlled Oscillator (VCO) uses a resonant circuit tunable over a wide range of resonant frequencies. The resonant circuit includes voltage variable elements such that the resonant frequency, and thus the frequency of oscillation, may be electronically tuned. The voltage variable elements are arranged such that multiple control voltages determine the resonant frequency. A first control voltage is applied to a first set of tuning elements and operates as a coarse control of the resonant frequency. A second control voltage is applied to a second set of tuning elements and operates as a fine control of the resonant frequency. Using multiple control voltages on multiple elements allows for a wideband VCO while maintaining a low VCO gain.
Abstract:
A frequency multiplier circuit generates an supplemental high-frequency timing signal from a single, low-frequency current-controlled oscillator (CCO). The current-controlled oscillator (CCO) generates a controlled discharge current and a controlled bias current which are controlled in parallel to substantially eliminate inaccuracies in a characteristic frequency-current curve of the current-controlled oscillator. The frequency multiplier circuit generates a high-frequency timing signal using the digitally-controlled CCO and avoids the usage of a phase-locked loop (PLL) technique. Specifically, a frequency multiplier includes a current-controlled oscillator having a plurality of input lines connected to receive a digital current select signal and having an output terminal connected to carry a timing signal at a current-controlled oscillator frequency f.sub.CCO set in accordance with the current select signal. The frequency multiplier further includes a control circuit having a first timing input terminal connected to the current-controlled oscillator output terminal to receive the current-controlled oscillator frequency f.sub.CCO, output lines connected to the current-controlled oscillator digital current select input lines, a second timing input terminal connected to receive a timing signal at a reference frequency f.sub.REF, and a plurality of input lines connected to receive a programmable frequency multiplication factor.
Abstract:
Relax oscillation circuits have at least one comparison circuit that is structured with a flipped gate transistor and a normal MOS transistor wherein the two transistors having different threshold voltages. The relaxation oscillators are configured for charging and discharging capacitances between the threshold voltages of the flipped gate transistor and the normal MOS transistor by toggling the state of a latching circuit to control the charging and discharging of the capacitances.