Abstract:
An organic light-emitting component includes a substrate on which a functional layer stack is applied, the stack including a first electrode, an organic functional layer stack thereover including an organic light-emitting layer and a translucent second electrode thereover, and a translucent halogen-containing thin-film encapsulation arrangement over the translucent second electrode, wherein a translucent protective layer having a refractive index of more than 1.6 is arranged directly on the translucent second electrode between the translucent second electrode and the thin-film encapsulation arrangement.
Abstract:
An optoelectronic component may include a carrier, a first electrode over the carrier, an organically functional layer structure over the first electrode, a second electrode over the organically functional layer structure, and an encapsulation layer structure over the second electrode, the encapsulation layer structure encapsulating the organically functional layer structure and including a first layer structure facing toward the second electrode and a second layer structure facing away from the second electrode, the first layer structure alternately including first layers having a first expansion coefficient and second layers having a second expansion coefficient, which is not equal to the first expansion coefficient, and the second layer structure alternately including third layers having a third expansion coefficient and fourth layers having a fourth expansion coefficient, which is not equal to the third expansion coefficient.
Abstract:
An optoelectronic assembly comprising an optoelectronic component, which comprises a specularly reflective surface and comprising a radiation cooler in direct physical contact with the optoelectronic component. The radiation cooler is arranged above the specularly reflective surface.
Abstract:
An optoelectronic component is provided with a carrier; a zinc oxide layer arranged on the carrier and having the first and second regions, wherein the first region is a first electrode structure which is doped with aluminum so that the first region is transparent and electrically conductive; an organic optically functional layer structure arranged at least partially over the first electrode structure; and a second electrode structure arranged at least partially over the organic optically functional layer structure. The first and second electrode structures electrically contact the organic optically functional layer structure. The zinc oxide layer has a lower doping in the second region than the first electrode structure. The zinc oxide layer is configured in the second region as a varistor layer structure, which is arranged between the first and second electrode structures and contacts the two electrode structures. The varistor layer structure adjoins the optically transparent first region.
Abstract:
An organic light-emitting component includes a substrate on which a functional layer stack is applied, the stack including a first electrode, an organic functional layer stack thereover including an organic light-emitting layer and a translucent second electrode thereover, and a translucent halogen-containing thin-film encapsulation arrangement over the translucent second electrode, wherein a translucent protective layer having a refractive index of more than 1.6 is arranged directly on a translucent second electrode between the translucent second electrode and the thin-film encapsulation arrangement, and the thin-film encapsulation arrangement is arranged directly on the translucent protective layer.
Abstract:
An organic light-emitting component includes a substrate on which a functional layer stack is applied, the stack including a first electrode, an organic functional layer stack thereover including an organic light-emitting layer and a translucent second electrode thereover, and a translucent halogen-containing thin-film encapsulation arrangement over the translucent second electrode, wherein a translucent protective layer having a refractive index of more than 1.6 is arranged directly on a translucent second electrode between the translucent second electrode and the thin-film encapsulation arrangement, and the thin-film encapsulation arrangement is arranged directly on the translucent protective layer.
Abstract:
The invention relates to a method for producing at least one layer (1) on a surface area (2) of an optoelectronic component (100, 101, 102, 103, 104, 105) comprising a functional layer sequence (41) with an active area which is suitable to produce or to detect the light when the optoelectronic component is in operation. Said method consists of the following steps: introducing the surface area (2) into a coating chamber (10); depositing the at least one layer (1) according to a flash-light supported atomic layer deposition method in which the surface area (2) is exposed to at least one gaseous first initial material (21) or at least one gaseous first initial material (21) and subsequently a gaseous second initial material (22) to form the at least one layer (1), and molecules of the first and/or second initial material (21, 22), which are absorbed on the surface area, are exposed to at least one flash of light, the molecules absorbed on the surface area being split.
Abstract:
An optoelectronic component is provided with a carrier; a zinc oxide layer arranged on the carrier and having the first and second regions, wherein the first region is a first electrode structure which is doped with aluminum so that the first region is transparent and electrically conductive; an organic optically functional layer structure arranged at least partially over the first electrode structure; and a second electrode structure arranged at least partially over the organic optically functional layer structure. The first and second electrode structures electrically contact the organic optically functional layer structure. The zinc oxide layer has a lower doping in the second region than the first electrode structure. The zinc oxide layer is configured in the second region as a varistor layer structure, which is arranged between the first and second electrode structures and contacts the two electrode structures. The varistor layer structure adjoins the optically transparent first region.
Abstract:
An element (1) is provided for stabilising an optoelectronic device (7), wherein the element (1) comprises a main body (1C), wherein the main body (1C) consists of a glass or at least comprises a glass and wherein the main body (1C) comprises a first and a second surface (1A, 1B). The first and second surface (1A, 1B) are opposite to one another and extend in each case in a lateral main direction of extension of the element (1), wherein a protective layer (2A, 2B) is formed at least at one of the surfaces (1A, 1B) and wherein the protective layer (2A, 2B) is configured and arranged in such a way that cracks (3) present in the main body (1C) are filled in by a material of the protective layer (2A, 2B). In addition, an optoelectronic device (7) is provided.
Abstract:
In various embodiments, an organic optoelectronic component is provided. The organic optoelectronic component may include a first electrode, an organic functional layer structure over the first electrode, and a second electrode over the organic functional layer structure. Optionally, the organic functional layer structure includes a charge carrier pair generation layer structure. At least one of the electrodes and/or the charge carrier pair generation layer structure includes electrically conductive nanostructures, the surfaces of which are at least partially coated with a coating material.