摘要:
A transportable three-dimensional calibration wind tunnel system consisting of a small wind tunnel portion for creating a three-dimensional airflow having a suitable wind velocity, and a two-axis rotational deformation device portion for causing the wind tunnel portion to effect a conical motion with a nozzle blow port being in close proximity to an apex to suitably change a flow angle. The two-axis rotational deformation device includes a .beta.-angle rotational deformation device having a .beta.-angle deformation base supported to be rotated horizontally, and an .alpha.-angle rotational deformation device having an .alpha.-angle deformation base supported to be rotated vertically. A rotational axis of the .alpha.-angle deformation base, a rotational axis of the .beta.-angle deformation base and a center axis of the small wind tunnel portion are arranged so that they intersect at a point. When verifying a flight control system of an aircraft using the transportable three-dimensional calibration wind tunnel system, the nozzle blow port of the three-dimensional calibration wind tunnel system is positioned at the extreme end of an air data sensor probe provided on the aircraft, and the three-dimensional calibration wind tunnel system and an on-board control computer of the aircraft are connected to an out-board control computer so that a suitable three-dimensional airflow is generated by the three-dimensional calibration wind tunnel system to verify the operation and function of the control surface in the stopped state on the ground.
摘要:
A floating board is installed on a surface table through an extremely low friction plane sliding and supporting mechanism, such as using a gas bearing, of two-dimensional 3 freedom to thereby constitute a plane sliding mechanism portion, and a vertical sliding shaft tube supported to be enable translation in a vertical direction and connected to a balance belt for applying a balance weight is provided on the floating board through an extremely low friction vertical shaft sliding and supporting mechanism, such as a bas bearing, to thereby constitute a vertical shaft sliding mechanism portion. Further, a spherical shaft is installed above the vertical sliding shaft tube of the vertical shaft sliding mechanism portion through an extremely low friction 3-freedom rotational and supporting mechanism, such as using a gas bearing, to thereby constitute a 3-axis turning rotational mechanism portion, and a specimen model loading portion is provided on the spherical shaft to thereby obtain a three-dimensional free motion apparatus that can be applied to an agravic environment simulation experimental apparatus, an evaluation and test apparatus for a flexible-article handling work robot, and the like, in which as a whole, the 3-axis translation and the motion function of 3-axis turning 6-freedom can be secured in the extremely low friction state.
摘要:
A mounting object comprises a combination of a body wherein elements of a metallic heat-resistant two-dimensional fastener in a mounting surface, and their engaging portions projecting therefrom have their base portions embedded and integrally molded, and a mating base object wherein integrally molded mating fastener elements project for detachable engagement with said fastener elements. The mounting object body is formed as a heat-resistant material integral with a metallic two-dimensional fastener by covering and fixing part of the fastener elements of the metallic two-dimensional fastener with a carbon powder having a high melting temperature and covering bases thereof with a metallic powder, a ceramics powder, or a mixture thereof which is molded and sintered.
摘要:
A superprecision positioning device includes an output shaft rotor, a plurality of eccentric shaft rotors including an inner eccentric shaft rotor and an outer eccentric shaft rotor, and a bearing base cylinder, electrically rotating and driving mechanism portions being provided between the eccentric shaft rotor and the output shaft rotor, and between the outer eccentric shaft rotor and the bearing base cylinder, respectively, whereby the eccentric shaft rotors and the output shaft rotor may be independently rotated and controlled. With this arrangement, movement in three degrees of freedom may be achieved by translational movement and rotation of the output shaft in a two-dimensional surface, and if an axially movable support shaft is inserted in the output shaft, an article being positioned may be moved with four degrees of freedom in total, providing superprecision positioning in units of 1/10 micron.
摘要:
It is an object of the present invention to solve the problem of a drop in precision in conventional systems using a square pyramid type five-hole probe due to the drop in atmospheric pressure in high altitude ranges, and to provide a wide velocity range flight velocity vector measurement system that can prevent a drop in measurement precision. Furthermore, it is also an object of the present invention to provide a method for eliminating the effects of detection fluctuations caused by adhering water droplets, ice particles or dust in a wide velocity range flight velocity vector measurement system. The flight velocity vector measurement probe of the present invention comprises means in which a static pressure hole is formed in the tube wall surface of the probe, so that a static pressure value is obtained from the pressure detected by this static pressure hole, the Mach number M is calculated on the basis of an equation approximated by a fourth-order polynomial of the static pressure/total pressure signal and the angle of attack, and in cases where an abnormal detection value is detected, this is replaced by the preceding detection value.
摘要:
It is an object of the present invention to solve the problem of a drop in precision in conventional systems using a square pyramid type five-hole probe due to the drop in atmospheric pressure in high altitude ranges, and to provide a wide velocity range flight velocity vector measurement system that can prevent a drop in measurement precision. Furthermore, it is also an object of the present invention to provide a method for eliminating the effects of detection fluctuations caused by adhering water droplets, ice particles or dust in a wide velocity range flight velocity vector measurement system. The flight velocity vector measurement probe of the present invention comprises means in which a static pressure hole is formed in the tube wall surface of the probe, so that a static pressure value is obtained from the pressure detected by this static pressure hole, the Mach number M is calculated on the basis of an equation approximated by a fourth-order polynomial of the static pressure/total pressure signal and the angle of attack, and in cases where an abnormal detection value is detected, this is replaced by the preceding detection value.
摘要:
An arithmetic processing method and system in a wide velocity range flight velocity vector measurement system using a square truncated pyramid-shape five-hole Pitot probe. Approximation equations that determine attack angle &agr; and sideslip angle &bgr; in the form of third-order equations concerning attack angle pressure coefficient C&agr; and sideslip angle pressure coefficient C&bgr;, which are known numbers, are expressed in the form of a polynomial equation concerning Mach number M, where the coefficients are obtained from a lookup table. Coefficient calculations in the polynomial equation, and attack angle a and sideslip angle &bgr;, calculations may be performed as simple calculations by specifying and applying known numbers into the approximation equation without solving third-order equations, with calibration coefficients that form the basis of coefficient calculation with the polynomial equation first being stored in memory in advance as a table for each wide velocity range on the basis of wind tunnel testing. A Mach number may be calculated instantly from a lookup table by specifying Mach pressure coefficient CM and angle to airflow pressure coefficient C&ggr;. Wide velocity range flight velocity vector measurement with a high update rate which is capable of real time response in flight control as demanded by aircraft is obtained.
摘要:
A flight velocity vector measuring system in a wide velocity region in which an attack angle pressure coefficient C&agr; of air current, a sideslip angle pressure coefficient C&bgr; and an air current angle pressure coefficient C&ggr; are obtained from five pressure information detected by a square truncated pyramid-shape probe. The aforementioned pressure coefficients, pressure calibration coefficients with respect to a Mach number M, an attack angle &agr; and a sideslip angle &bgr; every velocity region obtained by dividing the wide velocity region into a plurality of regions stored in advance in the calculation processor, and a Mach number M, an attack angle &agr; and a sideslip angle &bgr; of unknown quantity constitute a calculation processing expression comprising a polynomial approximation to call the pressure calibration coefficients in the velocity region, and flight velocity vectors (M, &agr;, &bgr;) are calculated by the polynomial approximation.
摘要:
A flight velocity detection system using a truncated pyramid-shape multi-e Pitot probe in which an extreme end portion has a truncated pyramid-shape, a cylindrical hole is provided at the apex thereof, a total pressure tube of a smaller diameter than that of the cylindrical hole is secured at a position by a predetermined length determined by a relationship with the diameter of the cylindrical hole from the extreme end of the cylindrical hole, and groups of pressure holes comprised of a plurality of pressure holes are arranged in each of the truncated pyramid surfaces of the truncated pyramid shape. Items of pressure information detected by the probe are input into a velocity vector processor to convert them into electric signals, and signals are processed using pressure coefficients of the holes of the probe with respect to the velocity vector stored in advance in the velocity vector processor to calculate flight velocity vector (V, .alpha., .beta.) with respect to the probe axis from the pressure information and air density.