Abstract:
Provided are a terminal, a base station and a signal transmission control method whereby a response signal can be efficiently transmitted when the terminal receives downstream allocation control information via an R-PDCCH. An extraction unit (204) receives downstream control information via one of a first downstream control channel, which is transmitted by use of one or more control channel elements (CCE) associated with an upstream control channel resource, and a second downstream control channel different from the first downstream control channel, and also receives data via a data channel. A control unit (208) selects, from resources associated with CCE and from particular resources reported by a base station, an upstream control channel resource to be used in transmission of the response signal, and controls the transmission of the response signal.
Abstract:
A wireless communication base station apparatus that allows the number of times of blind decodings at a mobile station to be reduced without increasing the overhead caused by notifying information. In this apparatus, a CCE allocation part allocates allocation information allocated to a PDCCH received from modulation parts to a particular one of a plurality of search spaces that is corresponding to a CCE aggregation size of the PDCCH. A placement part then places the allocation information in one of downstream line resources, reserved for the PDCCH, that is corresponding to the CCE of the particular search space to which the allocation information has been allocated. A radio transmission part then transmits an OFDM symbol, in which the allocation information has been placed, to the mobile station from an antenna.
Abstract:
In the base station (100), a search space setting unit (103) sets a search space on the basis of a search space setting rule in accordance with R-PDCCH range of a setting target slot, and an allocating unit (108) places DCI in one of a plurality of candidates of to-be-decoded unit range included in the set search space. The search space setting rules are associated with respective numbers of candidates of to-be-decoded unit range corresponding to the respective ones of a plurality of numbers of connections for R-CCE, and a first search space setting rule of a slot 0 and a second search space setting rule of a slot 1 are different from each other in terms of the patterns related to the numbers of candidates of to-be-decoded unit range corresponding to the plurality of numbers of connections for R-CCE.
Abstract:
The present disclosure provides a method of generating codebook in a wireless communication system with multiple antenna arrays, as well as a wireless communication system, base station and terminal using the codebook for communication. The method comprises steps of: providing a basic codebook which contains multiple pre-coding matrices; and assigning phase offsets to certain pre-coding matrices in the basic codebook to form a codebook with phase offset. The feedback overhead from a client to a base station side is reduced and a good precision of feedback for multi-antenna array is kept by applying the method of generating codebook and using the generated codebook in the wireless communication system, base station and terminal.
Abstract:
Provided are a base station, a terminal, a band allocation method, and a downlink data communication method in which a mapping method for synchronization signals and report signals is implemented with high resource usage efficiency when a first system in which an independent single communication is allocated to a unit band co-exists with a second system in which a plurality of unit bands can be allocated to a single communication. In a base station, an OFDM signal generation unit maps primary synchronization channel (P-SCH), secondary synchronization channel (S-SCH), primary broadcast channel (P-BCH), and dynamic broadcast channel (D-BCH), which can be decoded by both an LTE terminal and an LTE+ terminal, to some of a plurality of unit bands. The OFDM signal generation unit also maps D-BCH+, which can be decoded only by an LTE+ terminal, to all of the plurality of unit bands to produce a multiplexed transmission signal.
Abstract:
Disclosed is a base station in which the frequency usage efficiency can be improved when the communication bandwidths are asymmetric in the uplink line and the downlink line. A base station can communicate by using a plurality of downlink unit bands and a smaller number of uplink unit bands. A control unit allocates uplink resource allocation information and downlink resource allocation information to a PDCCH which is arranged in each of the plurality of downlink unit bands, and allocates a response signal to the uplink line data to a PHICH which is arranged in the same number of downlink unit bands from the plurality of downlink unit bands as there are uplink unit bands. A transmit RF unit transmits the resource allocation information or the response signal.
Abstract:
A wireless communication base station apparatus which is able to prevent deterioration in the throughput of LTE terminals even when LTE terminals and LTE+ terminals coexist. In this apparatus, based on the mapping pattern of the reference signals used only in LTE+ terminals, a setting unit sets, in each subframe, the resource block groups where the reference signals used only by the LTE+ terminals are mapped. For symbols mapped to the antennas, an mapping unit maps, to all the resource blocks within one frame, cell specific reference signals used for both LTE terminals and LTE+ terminals. For the symbols mapped to the antennas, the mapping unit maps, to the plurality of resource blocks, of which part of the resource block groups is comprised, in the same subframe within one frame, the cell specific reference signals used only for LTE+ terminals, based on the setting results inputted from the setting unit.
Abstract:
A radio communication mobile station device reduces the number of blind decoding processes at a mobile station without increasing overhead by report information. The device includes a judgment unit which judges a particular PUCCH to which a response signal corresponding to the downstream line data is to be allocated among a plurality of PUCCH, according to a CCE occupied by PDCCH allocated to a particular search space corresponding to a CCE aggregation size of the PDCCH to which allocation information destined to the local station is allocated among search spaces changing in accordance with the CFI value; and a control unit which controls a cyclic shift amount of a ZAC sequence of the response signal and a block-wise spread code sequence according to a correspondence between CCE occupied by PDCCH allocated to a particular search space and a particular PUCCH resource, the correspondence changing in accordance with the CFI value.
Abstract:
The present disclosure provides a method of generating codebook in a wireless communication system with multiple antenna arrays, as well as a wireless communication system, base station and terminal using the codebook for communication. The method comprises steps of: providing a basic codebook which contains multiple pre-coding matrices; and assigning phase offsets to certain pre-coding matrices in the basic codebook to form a codebook with phase offset. The feedback overhead from a client to a base station side is reduced and a good precision of feedback for multi-antenna array is kept by applying the method of generating codebook and using the generated codebook in the wireless communication system, base station and terminal.
Abstract:
Provided is a radio communication terminal which is capable of measuring quality in communication with a handover destination with high accuracy. The radio communication terminal is capable of communicating with a base station or a relay node, and includes: a receiver which receives control information including information relating to measurement of measuring quality of a neighbor cell; an extractor which extracts information on a subframe where the measurement should be performed, which is a subframe where only transmission of a signal from the relay node connected to the base station is performed, from the information relating to the measurement; a measurement section which performs the measurement, on a subframe basis, based on the extracted information on the subframe where the measurement should be performed; and a transmitter which transmits a result of the measurement to the base station or the relay node.