Abstract:
The present invention provides a photoelectrode capable of effectively utilizing energy of light for an intended reaction such as a water decomposition reaction. The present invention provides a photoelectrode 100 includes a first conductor 101 as a substrate; a second conductor 102 which is disposed on first conductor 101, has a porous structure including a three-dimensionally continuous skeleton 102a and pores 102b formed by the skeleton 102a, and is transparent; and a visible-light photocatalyst 103 disposed in the pores of the second conductor 102.
Abstract:
The present invention provides a method for fabricating a single-crystalline niobium oxynitride film suitable for a hydrogen generation device. The present invention provides a method for fabricating a single-crystalline niobium oxynitride film formed of a niobium oxynitride represented by the chemical formula NbON; the method comprising: (a) epitaxially growing the single-crystalline niobium oxynitride film on one substrate selected from the group consisting of a yttria-stabilized zirconia substrate, a titanium oxide substrate, and a yttrium-aluminum complex oxide substrate.
Abstract:
Provided is a method for generating hydrogen. The method comprising (a) preparing a hydrogen generation device comprising a container, a photo-semiconductor electrode comprising a substrate, a light-blocking first conductive layer, and a first semiconductor photocatalyst layer, a counter electrode, a conductive wire for electrically connecting the first conductive layer to the counter electrode, and a liquid stored in the container, and (b) irradiating the first semiconductor photocatalyst layer with light to generate hydrogen on the counter electrode. The first conductive layer is interposed between the substrate and the first semiconductor photocatalyst layer. At least a part of the first semiconductor photocatalyst layer is in contact with the liquid. At least a part of the counter electrode is in contact with the liquid. The liquid is selected from the group consisting of an electrolyte aqueous solution and water. The substrate is formed of a resin.
Abstract:
The present invention provides a method for generating hydrogen by water splitting at a higher hydrogen generation efficiency. In the present method, used is a photoelectrochemical cell comprising a container, a liquid stored in the container, a semiconductor electrode contained in the container, and a counter electrode contained in the container. The semiconductor electrode comprises a first semiconductor layer, a light-transmissive conductor layer; and a second semiconductor layer.