Abstract:
This disclosure provides systems, methods, and apparatus for a MEMS display incorporating integrated sidewall reflectors. The display can include a light blocking component suspended over a substrate. The light blocking component can include an aperture in its surface that is parallel to the substrate. The display can include one or more sidewall reflectors positioned within the aperture. The one or more sidewall reflectors can be arranged at least partially normal to the surface of the light blocking component. Light that is directed through the aperture can be reflected off of the sidewall reflectors to escape from the display at a higher angle than would otherwise be possible.
Abstract:
This disclosure provides systems, methods and apparatus for modulating light for a display. The system includes a light blocking layer including a reflective layer and a light absorbing layer. The light blocking layer is configured such that any conductive components therein underlie or cover less than a majority of the circuitry controlling the display elements incorporated into the display.
Abstract:
This disclosure provides systems, methods and apparatus for controlling pixels of a display apparatus. An apparatus including a plurality of pixels can be controlled by a control matrix. The control matrix includes for each pixel a first transistor that has a first threshold voltage and a second transistor that has a second threshold voltage. A single data interconnect provides a common data voltage to the first and second transistors to control the states of corresponding first and second light modulators.
Abstract:
This disclosure provides systems, methods and apparatus for improving an aperture ratio of a display apparatus. In particular, display elements are configured to have a length that is greater in one dimension than that in the other dimension. This implementation can reduce overhead costs associated with components such as actuators and actuator circuitry and improves the aperture ratio. Furthermore, display elements within the display apparatus can be arranged in a staggered manner. The staggered arrangement improves the perceived display element density of the display apparatus. In some implementations, the display elements are staggered along the rows of the display apparatus, while in some other implementations, the display elements are staggered along the columns of the display apparatus. In some implementations, multiple image pixels in one dimension are utilized to generate signals for each display elements.
Abstract:
This disclosure provides systems, methods and apparatus for improving an aperture ratio of a display apparatus. In particular, display elements are configured to have a length that is greater in one dimension than that in the other dimension. This implementation can reduce overhead costs associated with components such as actuators and actuator circuitry and improves the aperture ratio. Furthermore, display elements within the display apparatus can be arranged in a staggered manner. The staggered arrangement improves the perceived display element density of the display apparatus. In some implementations, the display elements are staggered along the rows of the display apparatus, while in some other implementations, the display elements are staggered along the columns of the display apparatus. In some implementations, multiple image pixels in one dimension are utilized to generate signals for each display elements.
Abstract:
This disclosure provides systems, methods and apparatus for reducing hotspots in backlit displays. Hotspot artifacts in multi-color backlit displays can be reduced by incorporating optical structures along the edges of light guides incorporated into the backlights. The optical structures are positioned adjacent to light emitting modules that emit light into the light guide. Light emitted from the light emitting modules passes through the optical structures before entering the light guide. Hotspot size can be reduced by appropriately configuring the shapes and sizes of these optical structures. In some implementations, the optical structures may include serrations along the side of the light guide adjacent to the light sources. In some other implementations, the optical structures may include dimples. Size of hotspots may also be reduced by reducing the distance between adjacent light sources of the same color.
Abstract:
This disclosure provides systems, methods and apparatus for displaying images. One such apparatus includes a substrate, an elevated aperture layer (EAL) defining a plurality of apertures formed therethrough, a plurality of anchors for supporting the EAL over the substrate and a plurality of display elements positioned between the substrate and the EAL. Each of the display elements may correspond to at least one respective aperture of the plurality of apertures defined by the EAL. Each display element also includes a movable portion supported over the substrate by a corresponding anchor supporting the EAL over the substrate. In some implementations, one or more light dispersion elements may be disposed in optical paths passing through the apertures defined by the EAL.
Abstract:
This disclosure provides systems, methods and apparatus related to light absorbing structures. In one aspect, a light absorbing structure has a metal layer and a semiconductor layer in contact with the metal layer. Each layer has a thickness up to about 50 nm. The metal layer can include at least one of titanium (Ti), molybdenum (Mo), and aluminum (Al). The semiconductor layer can include a layer of amorphous silicon (a-Si). The light absorbing structure can be included in a display apparatus having a substrate supporting an array of display elements. The light absorbing structure can include a dielectric layer in contact with the metal layer and a thick metal layer in contact with the semiconductor layer. In another aspect, a light absorbing structure has a metal layer and an ITO layer in contact with the metal layer. The thickness of the ITO layer can be less than about 100 nm.
Abstract:
Displays having a plurality of shutter assemblies with movable shutters. Typically, the shutter assemblies are arranged in a grid of rows and columns, and the grid has a horizontal axis aligned with a horizontal axis of the display. The shutter assembly is aligned within the grid to have the axis of motion of respective shutters extend at an angle relative to the horizontal axis of the grid. In certain implementations, the shutter assemblies have a rectangular peripheral edge, and are arranged in the grid to have the square peripheral edge disposed at an angle relative to the horizontal axis of the grid. This can arrange the shutter assemblies into a diamond layout within the grid and place the shutter assemblies of adjacent columns into spatially offset rows of the grid. In some implementations, this increases the pixels per inch of the display, in other implementations, increases the aperture ratio.
Abstract:
This disclosure provides systems, methods, and apparatus for improving angular distribution of light and total light throughput in a display device. A display device can include first and second substrates and an array of display elements positioned between the first and second substrates. A first light blocking layer can be positioned on the first substrate and can define a first plurality of apertures. A second light blocking layer can be positioned on the second substrate and can define a first second of apertures. A plurality of reflective sidewalls can be positioned adjacent to at least one edge of a respective aperture of the first plurality of apertures. The reflective sidewalls can help to improve angular distribution of light and total light throughput of the display device.