摘要:
A method of manufacturing a semiconductor device that includes forming a gate dielectric layer over a semiconductor substrate. A gate electrode is formed over the gate dielectric layer. A dopant is implanted into an extension region of the substrate, with an amount of the dopant remaining in a dielectric layer adjacent the gate electrode. The substrate is annealed at a temperature of about 1000° C. or greater to cause at least a portion of the amount of the dopant to diffuse into the semiconductor substrate.
摘要:
The present invention provides a method for manufacturing a semiconductor device and a method for manufacturing an integrated circuit. The method for manufacturing the semiconductor device, among other steps, includes forming a capping layer (210) over a transistor device having source/drain regions (150, 155) located over a substrate (110), the capping layer (210) having a degree of reflectivity, and annealing the transistor device through the capping layer (210) using photons (310), the annealing of the transistor device affected by the degree of reflectivity.
摘要:
The present invention provides a method for manufacturing a semiconductor device and a method for manufacturing an integrated circuit. The method for manufacturing the semiconductor device, among other steps, includes forming a capping layer (210) over a transistor device having source/drain regions (150, 155) located over a substrate (110), the capping layer (210) having a degree of reflectivity, and annealing the transistor device through the capping layer (210) using photons (310), the annealing of the transistor device affected by the degree of reflectivity.
摘要:
A method (40) of forming an integrated circuit (60) device including a substrate (64). The method including the step of first (42), forming a gate stack (62) in a fixed relationship to the substrate, the gate stack including a gate having sidewalls. The method further includes the step of second (42), implanting source/drain extensions (701, 702) into the substrate and self-aligned relative to the gate stack. The method further includes the steps of third (46, 48), forming a first sidewall-forming layer (72) in a fixed relationship to the sidewalls and forming a second sidewall-forming layer (74) in a fixed relationship to the sidewalls. The step of forming a second sidewall-forming layer includes depositing the second sidewall-forming layer at a temperature equal to or greater than approximately 850° C. The method further includes the step of fourth (50), implanting deep source/drain regions (761, 762) into the substrate and self-aligned relative to the gate stack and the first and second sidewall-forming layers.
摘要:
A method of forming a generally T-shaped structure. The method comprises forming a poly/amorphous silicon layer stack which comprises a polysilicon layer and a generally amorphous silicon layer overlying the polysilicon layer. The method further comprises selectively etching the poly/amorphous silicon layer stack, wherein an etch rate associated with the generally amorphous silicon layer in an over etch step associated therewith is less than an etch rate associated with the polysilicon layer, thereby causing a lateral portion of the generally amorphous silicon layer to extend beyond a corresponding lateral portion of the polysilicon layer.
摘要:
A process for forming diffused region less than 20 nanometers deep with an average doping dose above 1014 cm−2 in an IC substrate, particularly LDD region in an MOS transistor, is disclosed. Dopants are implanted into a source dielectric layer using gas cluster ion beam (GCIB) implantation, molecular ion implantation or atomic ion implantation resulting in negligible damage in the IC substrate. A spike anneal or a laser anneal diffuses the implanted dopants into the IC substrate. The inventive process may also be applied to forming source and drain (S/D) regions. One source dielectric layer may be used for forming both NLDD and PLDD regions.
摘要:
A method for reducing curvature of a wafer having a semiconductor surface. One or more process steps are identified at which wafers exhibit the largest curvature, and/or wafer curvature that may reduce die yield. A crystal damaging process converts at least a portion of the semiconductor surface into at least one amorphous surface region After or contemporaneously with the crystal damaging, the amorphous surface region is recrystallized by recrystallization annealing that anneals the wafer for a time ≦5 seconds at a temperature sufficient for recrystallization of the amorphous surface region. A subsequent photolithography step is facilitated due to the reduction in average wafer curvature provided by the recrystallization.
摘要:
The present invention provides, for use in a semiconductor manufacturing process, a method (100) of preparing an ion-implantation source material. The method includes providing (110) a deliquescent ion implantation source material and mixing (110) the deliquescent ion implantation source material with an organic liquid to form a paste.
摘要:
Ultra high temperature (UHT) anneals above 1200 C for less than 100 milliseconds for PMOS transistors reduce end of range dislocations, but are incompatible with stress memorization technique (SMT) layers used to enhance NMOS on-state current. This invention reverses the conventional order of forming the NMOS first by forming PSD using carbon co-implants and UHT annealing them before implanting the NSD and depositing the SMT layer. End of range dislocation densities in the PSD space charge region below 100 cm−2 are achieved. Tensile stress in the PMOS from the SMT layer is significantly reduced. The PLDD may also be UHT annealed to reduce end of range dislocations close to the PMOS channel.
摘要:
Exemplary embodiments provide methods for reducing and/or removing slip and plastic deformations in semiconductor materials by use of one or more ultra-fast thermal spike anneals. The ultra-fast thermal spike anneal can be an ultra-high temperature (UHT) anneal having an ultra-short annealing time. During the ultra-fast thermal spike anneal, an increased annealing power density can be used to achieve a desired annealing temperature required by manufacturing processes. In an exemplary embodiment, the annealing temperature can be in the range of about 1150° C. to about 1390° C. and the annealing dwell time can be on the order of less than about 0.8 milliseconds. In various embodiments, the disclosed spike-annealing processes can be used to fabrication structures and regions of MOS transistor devices, for example, drain and source extension regions and/or drain and source regions.