Abstract:
A user equipment (UE) may communicate over a first wireless wide area network (WWAN). The first WWAN may be supported by a first subscriber identity module (SIM) of the UE. The UE may also communicate simultaneously over a second WWAN supported by a second SIM. The UE may process the second WWAN communication with a portion of a WWAN module and a portion of a wireless local area network (WLAN) module.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The method and apparatus resolve issues related to voice and data handovers between micro cells, femto cells and other small cells, and to handovers from macro cells to small cells are becoming increasingly significant as small cells are more widely deployed. In order to handoff a call associated with a user equipment, a base station attempts to identify neighboring cells that are within communication range of the user equipment based on a primary scrambling code and delays between multiple transmissions of the PSC detected by the user equipment and reported to the base station by the user equipment.
Abstract:
A method of wireless communication includes communicating by receiving by a first transceiver a first type of signal, receiving by a second transceiver a first type of signal, carrier aggregating the signals received by the first transceiver and the signal the second transceiver. The method includes detecting a second type of signal and switching the first transceiver to receive the second signal type while the second transceiver continues to receive the first type of signal.
Abstract:
This disclosure relates to techniques for resource utilization in a source device when transmitting video data in a Wireless Display (WD) system. A method for wireless display of compressed content may comprise determining, by a source device, a decoding capability of a sink device, receiving, by the source device, a request to display compressed content at the sink device in a wireless display session, and in the case that the decoding capability of the sink device allows for decoding of the compressed content, transmitting the compressed content from the source device to the sink device, whereby transcoding the compressed content is avoided in the source device.
Abstract:
This disclosure relates to techniques for synchronizing playback of media data between a source device and one or more sink devices in a Wireless Display (WD) system. WD systems enable mobile devices to share a local display of the source device with remote sink devices. The techniques of this disclosure include a management procedure at the source device to select a universal queue size for the source device and the participating sink devices. The source device selects the universal queue size based at least on supported queue sizes of the source device and the sink devices. The media packets are then held in queues having the universal queue size at the source device and the sink devices. The uniform queue size combined with compensation for transmission delay enables each of the devices to begin processing the media packets at the same time.
Abstract:
A system including a communication detection and classification apparatus configured to detect and classify radio signals is disclosed. The system may include a communication service detection unit configured to detect available radio communication services and to store system parameters relating to the available radio communication services in a memory, an access probe and energy detection unit configured to detect a radio signal within a proximity to the communication detection and classification apparatus and to store the detected radio signal, wherein the radio signal is communicated over one of the detected available radio communication services, an analysis unit configured to analyze the detected radio signal, and a classification unit configured to classify a type of activity of the detected radio signal based on an output of the analysis unit.
Abstract:
An adjustable filter is responsive to a control signal to change a frequency response of the adjustable filter based on frequency spectrum information. The control signal may shift a center of the pass band from a first center frequency to a second center frequency and/or change a pass band bandwidth from a first bandwidth to a second bandwidth. In one example, the frequency spectrum information includes a status of an internal secondary radio. The frequency spectrum information may also indicate a region of operation where the frequency response is selected in accordance with the region.
Abstract:
A user equipment (UE) may receive a wireless wide area network (WWAN) signal on a first antenna. The UE may process the WWAN signal with a portion of a WWAN receive chain of a WWAN module of the UE. The WWAN signal may be routed from the WWAN receive chain to a wireless local area network (WLAN) receive chain of a WLAN module of the UE. The UE may then process the WWAN signal with a portion of the WLAN receive chain.
Abstract:
Methods, systems, and devices for wireless communication are provided for mobility management for wireless communications systems that utilize a flexible bandwidth carrier. Some embodiments include approaches for determining bandwidth information, such as one or more bandwidth scaling factors N and/or flexible bandwidths, at a user equipment (UE), where the bandwidth information may not be signaled to the UE. Embodiments for determining bandwidth information include: random ordered bandwidth scaling factor approaches, delay ordered bandwidth scaling factor approaches, storing bandwidth scaling factor value in UE Neighbor Record approaches, spectrum measurement approaches, spectrum calculation approaches, and/or a priori approaches. Flexible bandwidth carrier systems may utilize spectrum portions that may not be big enough to fit a normal waveform. Flexible bandwidth carrier systems may be generated through dilating, or scaling down, time, frame lengths, bandwidth, or the chip rate of the flexible bandwidth carrier systems with respect to a normal bandwidth carrier system.
Abstract:
A method of wireless communication includes communicating using a first radio based on a first radio technology; configuring a second radio based on a second radio technology different from the first radio technology to assist the first radio with a first-radio operation; and performing at least a portion of the first-radio operation at the second radio. The first-radio operation includes at least one of multiple subscriber identity module (SIM) page monitoring and page/data processing, higher order diversity data acquisition and processing, interference measurement and management, E-UTRAN cell global identifier (ECGI) determination and reporting, a reference signal time difference (RSTD) measurement, beacon detection for small cell identification, a minimization of drive test (MDT) measurement, and a speed estimation measurement. The first radio technology is a wireless wide area network (WWAN) technology and the second radio technology is a wireless local area network (WLAN) technology.