Abstract:
Certain aspects of the present disclosure are directed to a semiconductor device. The semiconductor device generally includes a ferroelectric (FE) semiconductor device having a channel region; a gate oxide; a FE region, wherein the gate oxide is disposed between the FE region and the channel region; a gate region, wherein the FE region is disposed between the gate oxide and the gate region; a first semiconductor region disposed adjacent to the channel region; and a second semiconductor region disposed adjacent to the channel region. The semiconductor device may also include a transistor, wherein a region of the transistor is connected to the gate region, the first semiconductor region, or the second semiconductor region of the FE semiconductor device.
Abstract:
A semiconductor device includes a substrate, a gate region formed on the substrate, a self-aligned gate cut formed in the gate region, and a middle of line (MOL) area formed on the gate region, wherein the self-aligned gate cut provides critical dimensions in a range from 5 nm to 30 nm. The self-aligned gate cut reduces capacitance and power, provides flexibility in placement of the MOL area, and reduces local routing congestion.
Abstract:
A semiconductor device may include a source/drain contact trench adjacent to a gate. The source/drain contact trench may include a first portion and a second portion on the first portion. The semiconductor device also may include an insulating contact spacer liner within the source/drain contact trench. The insulating contact spacer liner contacts the first portion but not the second portion of the source/drain contact trench. The semiconductor device may further include a conductive material within the insulating contact spacer liner and the second portion of the source/drain contact trench. The conductive material may land in a source/drain region of the semiconductor device.
Abstract:
The n-type to p-type fin-FET strength ratio in an integrated logic circuit may be tuned by the use of cut regions in the active and dummy gate electrodes. In some examples, separate cut regions for the dummy gate electrodes and the active gate electrode may be used to allow for different lengths of gate pass-active regions resulting in appropriately tuned integrated logic circuits.
Abstract:
Disclosed are devices that include a contact for electrical connection with a source/drain. The contact occupies a full width of a contact well other than areas occupied by sidewall spacers. As a result, high resistivity (due to the presence of liners and nucleation layers within the contact well in conventional devices) is reduced or eliminated.
Abstract:
Disclosed are techniques for a semiconductor structure. In an aspect, a semiconductor structure includes a gate structure disposed on a substrate, a gate spacer adjacent to the gate structure, a source/drain structure adjacent to the gate spacer, a first dielectric layer disposed on the substrate and the source/drain structure, an etch stop spacer over the first dielectric layer and adjacent to the gate spacer, and an etch stop layer over the gate structure, the gate spacer, and the etch stop spacer. The semiconductor structure further includes a source/drain contact extending through the etch stop layer and the first dielectric layer and in contact with the source/drain structure, a sidewall of the source/drain contact adjoining a sidewall of the etch stop layer and a sidewall of the etch stop spacer.
Abstract:
Disclosed are standard cells, transistors, and methods for fabricating the same. In an aspect, a transistor includes a drain and a source each including a first drain/source silicide layer on a frontside surface of the drain/source and a second drain/source silicide layer on a backside surface of the drain/source. The first drain silicide layer is coupled to a first drain contact structure or the second drain silicide layer is coupled to a second drain contact structure. The first source silicide layer is coupled to a first source contact structure or the second source silicide layer is coupled to a second source contact structure. A gate structure is disposed between the source and the drain. A channel is at least partially enclosed by the gate structure and disposed between the source and the drain and is recessed from the backside surfaces of the source and drain.
Abstract:
In an aspect, a transistor comprises a gate structure having a metal gate, a dielectric layer at least partially surrounding the metal gate, a metal cap over a portion of the metal gate that is not surrounded by the dielectric layer, and a gate contact comprising tungsten in direct contact with the metal cap. In another aspect, a transistor comprises source, drain, and channel regions, a gate structure comprising a metal gate between gate spacers above the channel region, and a source or drain (S/D) contact structure. The S/D contact structure comprises an S/D barrier layer above at least a portion of the source or drain region and in direct contact with a gate spacer, and an S/D contact, comprising a first portion above the S/D barrier layer; and a second portion comprising tungsten, above the first portion.
Abstract:
In some aspects, a semiconductor die includes an insulation layer disposed on a substrate, a gate spacer disposed in the insulation layer, a gate disposed between the gate spacer, a first dielectric gate layer disposed on the gate between the gate spacer, a second dielectric gate layer disposed on the first dielectric gate layer between the gate spacer, a gate contact coupled to the gate and in contact with the first dielectric gate layer and the second dielectric gate layer, and a source/drain contact that has a single inner spacer.
Abstract:
In an aspect, a semiconductor device includes a gate. The gate includes a first portion that is located on one end of the gate, a second portion that is located on an opposite end of the gate from the first portion, and a third portion that is located in-between the first portion and the second portion. A first cap located on top of the first portion. A second cap located on top of the second portion. The third portion is capless. A gate contact is located on top of the third portion.