Abstract:
The present invention makes it possible to increase the selectivity of a gate insulation film in an active element formed in a wiring layer. A semiconductor device according to the present invention has a bottom gate type transistor using an antireflection film formed over an Al wire in a wiring layer as a gate wire.
Abstract:
A semiconductor device includes a logic circuit and an active element circuit. The logic circuit is provided with semiconductor elements formed in a semiconductor substrate. The active element circuit is provided with transistors formed using semiconductor layers formed over a diffusion insulating film formed above a semiconductor substrate. The active element circuit is controlled by the logic circuit.
Abstract:
A semiconductor device, includes a semiconductor substrate, a first interconnect layer formed over the semiconductor substrate, a gate electrode formed in the first interconnect layer, a gate insulating film formed over the gate electrode, a second interconnect layer formed over the gate insulating film, an oxide semiconductor layer formed in the second interconnect layer, and a via formed in the second interconnect layer and connected to the oxide semiconductor layer. The gate electrode, the gate insulating film and the oxide semiconductor layer overlap in a plan view.
Abstract:
The present invention makes it possible to lower the on resistance of a semiconductor element without hindering the function of a diffusion prevention film in a semiconductor device having the semiconductor element that uses a wire in a wiring layer as a gate electrode and has a gate insulation film in an identical layer to the diffusion prevention film. A first wire and a gate electrode are embedded into the surface layer of an insulation layer comprising a first wiring layer. A diffusion prevention film is formed between the first wiring layer and a second wiring layer. A gate insulation film is formed by: forming a recess over the upper face of the diffusion prevention film in the region overlapping with the gate electrode and around the region; and thinning the part.
Abstract:
The present invention makes it possible to lower the on resistance of a semiconductor element without hindering the function of a diffusion prevention film in a semiconductor device having the semiconductor element that uses a wire in a wiring layer as a gate electrode and has a gate insulation film in an identical layer to the diffusion prevention film. A first wire and a gate electrode are embedded into the surface layer of an insulation layer comprising a first wiring layer. A diffusion prevention film is formed between the first wiring layer and a second wiring layer. A gate insulation film is formed by: forming a recess over the upper face of the diffusion prevention film in the region overlapping with the gate electrode and around the region; and thinning the part.
Abstract:
Disclosed is a semiconductor device provided with an active element in a multilayer interconnect layer and decreased in a chip area. A second interconnect layer is provided over a first interconnect layer. A first interlayer insulating layer is provided in the first interconnect layer. A semiconductor layer is provided in a second interconnect layer and in contact with the first interlayer insulating layer. A gate insulating film is provided over the semiconductor layer. A gate electrode is provided over the gate insulating film. At least two first vias are provided in the first interconnect layer and in contact by way of upper ends thereof with the semiconductor layer.
Abstract:
The performances of semiconductor elements disposed in a multilayer wiring layer are improved. A semiconductor device includes: a first wire disposed in a first wiring layer; a second wire disposed in a second wiring layer stacked over the first wiring layer; a gate electrode arranged between the first wire and the second wire in the direction of stacking of the first wiring layer and the second wiring layer, and not coupled with the first wire and the second wire; a gate insulation film disposed over the side surface of the gate electrode; and a semiconductor layer disposed over the side surface of the gate electrode via the gate insulation film, and coupled with the first wire and the second wire.
Abstract:
A circuit including an inverter is provided for a wiring layer.A semiconductor device is provided with a wiring layer circuit which is formed over an insulating film and includes at least one inverter element. The inverter is provided with a first transistor element and a resistance element which is connected to the first transistor via a connection node. The first transistor element is provided with a gate electrode which is embedded in an interlayer insulating film including the insulating film, a gate insulating film which is formed over the interlayer insulating film and the gate electrode, and a first semiconductor layer which is formed over the gate insulating film between a source electrode and a drain electrode. The resistance element is provided with a second semiconductor layer which functions as a resistance. The first semiconductor layer and the second semiconductor layer are formed in the same layer.