Abstract:
A component for an injection system for mixture-compressing, spark-ignition internal combustion engines, which is used to apportion a fluid under high pressure, in particular a highpressure line or fluid manifold. The component includes a main body on which at least one hydraulic connection is provided, at least the main body having the connection being formed by single stage or multistage forging, an interior being formed on the main body by chip-removing machining after forging and a connection channel, which intersects with the interior in an intersection region, being formed at the connection by chip-removing machining after forging. The intersection region is deburred by mechanical deburring. An injection system and a method for producing such a component are also described.
Abstract:
A fuel injection system has a fuel distributor and multiple fuel injection valves each disposed on a cup of the fuel distributor. At least one injection valve is mounted on the associated cup by way of at least one holding element. An abutment surface is provided on the outer side of the cup. A support surface is configured on the underside of the cup. The holding element is moreover configured as a holding clamp. An abutment surface is provided on an outer side of the fuel injection valve. The holding clamp engages on the one hand behind the abutment surface of the cup and on the other hand behind the abutment surface of the fuel injection valve. The holding clamp furthermore pushes the fuel injection valve toward the support surface.
Abstract:
A system, which in particular is used as a fuel injection system for high-pressure injection in internal combustion engines, includes a fuel distributor and a plurality of fuel injectors. Each of the fuel injectors is situated on a cup of the fuel distributor. At least one of the fuel injectors is fastened to the associated cup by a retaining clip. The retaining clip has at least one clip section which is situated between an inner side of the cup and an outer side of the fuel injector. Furthermore, at least one damping composite element is provided, which is situated between the clip section of the retaining clip and the outer side of the fuel injector. The damping composite element has an elastically deformable damping layer. A decoupling is thus realized, which acts to damp vibrations and consequently to reduce noise.
Abstract:
A system, which is used especially as a fuel injection system for the high-pressure injection in internal combustion engines, includes a fuel distributor and a plurality of fuel injectors. Each fuel injector is situated on a cup of the fuel distributor. At least one of the fuel injectors is fastened to the associated cup by a holding element. The holding element has an at least essentially straight first leg and an at least essentially straight second leg. The cup includes at least one recess, which extends through a wall of the cup. The first leg and the second leg are guided through the at least one recess. Furthermore, the connection sleeve of the fuel injector has a collar, which is braced on the first leg of the holding element and on the second leg of the holding element in order to secure the fuel injector on the cup.
Abstract:
A holder used for mounting at least one component on an add-on structure, e.g., an internal combustion engine, includes: a base element able to be connected to a component; a fixation element, which extends through the through bore of the base element and a damping element disposed in the through bore, in order to mount the base element on the add-on structure; a fixation sleeve; and a damping element surrounding an outer side of the fixation sleeve and form-fittingly connected to the fixation sleeve on at least one side along the longitudinal axis, and on at least one side the damping element is form-fittingly connected to the base element along the longitudinal axis.
Abstract:
A bearing sleeve for a holder, which is used for fastening a fuel distributor on an add-on structure, includes a first sleeve part and a second sleeve part. The first sleeve part has a rigid sleeve body and a damping element which is integrally connected to the sleeve body of the first sleeve part. The second sleeve part has a rigid sleeve body and a damping element which is integrally connected to the sleeve body of the second sleeve part.
Abstract:
A system, which is used in particular as a fuel injection system for the high-pressure injection in internal combustion engines, includes a fuel distributor and a plurality of fuel injectors. Each fuel injector is situated on a cup of the fuel distributor. At least one of the fuel injectors is fastened to the associated cup by a holding element, which has a supporting surface. The cup has a contact surface on an underside, by way of which the cup is supported at the supporting surface of the holding element by a damping layer. The holding element is attached to the cup. In addition, the fuel injector has a collar, which is braced on the holding element. Because of the damping layer, vibrations are able to be dampened, and the noise transmissions is able to be reduced.
Abstract:
A fuel injection system has a fuel distributor and multiple fuel injection valves each disposed on a cup of the fuel distributor. At least one injection valve is mounted on the associated cup by way of at least one holding element. An abutment surface is provided on the outer side of the cup. A support surface is configured on the underside of the cup. The holding element is moreover configured as a holding clamp. An abutment surface is provided on an outer side of the fuel injection valve. The holding clamp engages on the one hand behind the abutment surface of the cup and on the other hand behind the abutment surface of the fuel injection valve. The holding clamp furthermore pushes the fuel injection valve toward the support surface.