Abstract:
A valve device includes a housing, a flow duct and a valve body. The valve body is arranged in the flow duct and has a sealing section that bears against a housing-side sealing seat when the valve device is closed. The sealing section and the sealing seat together form a sealing region. There is a collapse zone immediately upstream of the sealing region in the flow duct when the valve device is closed. The collapse zone is delimited by a boundary wall that is at least substantially perpendicular with respect to a movement axis of the valve body and by a deflector wall that is arranged at an angle with respect to the boundary wall. The boundary wall is longer than the deflector wall.
Abstract:
A system, which is used in particular as a fuel injection system for the high-pressure injection in internal combustion engines, includes a fuel distributor and a plurality of fuel injectors. Each fuel injector is situated on a cup of the fuel distributor. At least one of the fuel injectors is fastened to the associated cup by a holding element, which has a supporting surface. The cup has a contact surface on an underside, by way of which the cup is supported at the supporting surface of the holding element by a damping layer. The holding element is attached to the cup. In addition, the fuel injector has a collar, which is braced on the holding element. Because of the damping layer, vibrations are able to be dampened, and the noise transmissions is able to be reduced.
Abstract:
A piston fuel pump for an internal combustion engine includes a pump housing, a piston, and a non-return discharge valve. The non-return discharge valve has a valve element and a guide element configured to guide the movement of the valve element. The guide element is at least indirectly pressed in a radial manner into an opening in the pump housing.
Abstract:
A fuel injection system for high-pressure injection in internal combustion engines includes: a fuel distributor; and at least one holder which is used for fastening the fuel distributor to an add-on structure. The holder includes a holder body which has a first layer, a second layer, and an elastically deformable damping layer. The first layer and the second layer are made from a metallic material. The elastically deformable damping layer is disposed between the first layer and the second layer. The holder body is connected to the fuel distributor by laser welding. The damping layer is made of a visco-elastic material.
Abstract:
A quantity control valve comprises a valve needle configured to move in an axial direction, a damping chamber having a wall, and a valve element delimiting the damping chamber. The valve needle is configured to move the valve element in an opening direction. A gap is defined between the wall of the damping chamber and the valve element. The gap has at least one recess and connects the damping chamber to a flow duct.
Abstract:
A fuel injection system has a fuel distributor and multiple fuel injection valves each disposed on a cup of the fuel distributor. At least one injection valve is mounted on the associated cup by way of at least one holding element. An abutment surface is provided on the outer side of the cup. A support surface is configured on the underside of the cup. The holding element is moreover configured as a holding clamp. An abutment surface is provided on an outer side of the fuel injection valve. The holding clamp engages on the one hand behind the abutment surface of the cup and on the other hand behind the abutment surface of the fuel injection valve. The holding clamp furthermore pushes the fuel injection valve toward the support surface.
Abstract:
A system, which in particular is used as a fuel injection system for high-pressure injection in internal combustion engines, includes a fuel distributor and a plurality of fuel injectors. Each of the fuel injectors is situated on a cup of the fuel distributor. At least one of the fuel injectors is fastened to the associated cup by a retaining clip. The retaining clip has at least one clip section which is situated between an inner side of the cup and an outer side of the fuel injector. Furthermore, at least one damping composite element is provided, which is situated between the clip section of the retaining clip and the outer side of the fuel injector. The damping composite element has an elastically deformable damping layer. A decoupling is thus realized, which acts to damp vibrations and consequently to reduce noise.
Abstract:
A system, which may be embodied particularly as a fuel injection system for high pressure injection in internal combustion engines, includes a fuel distributor and a mounting support, which is used for fastening the fuel distributor to an externally-mounted structure, particularly a cylinder head, of an internal combustion engine. In this case, a damping composite element is provided, which is connected to the mounting support and/or the fuel distributor. The damping composite element includes at least one metal layer, which is formed at least essentially of a metallic material, and at least one elastically deformable damping layer.
Abstract:
A piston-type fuel pump for an internal combustion engine includes a pump housing, a piston, an annular counterplate, and a non-return outlet valve. The pump housing includes a stepped opening and a piston opening. The piston is guided in the piston opening. The counterplate is pressed into the stepped opening and includes a valve seat. The non-return valve includes a valve element and a guide element. The guide element guides the valve element, is arranged radially outside the valve element and in the stepped opening, and includes a guide section, a retention section, and a support section. The guide section guides the valve element, the retention section is connected to the guide section via a radially extending connecting section, and the support section supports a valve spring. The sections are arranged axially at different points such that the guide section is between the counterplate and the support section.
Abstract:
A quantity control valve comprises a valve needle configured to move in an axial direction, a damping chamber having a wall, and a valve element delimiting the damping chamber. The valve needle is configured to move the valve element in an opening direction. A gap is defined between the wall of the damping chamber and the valve element. The gap has at least one recess and connects the damping chamber to a flow duct.