Abstract:
A liquid container for accommodating a liquid includes: a plurality of detection electrodes mounted on the liquid container and connected to a detection circuit installed outside the liquid container, wherein the plurality of detection electrodes detects a tilt of the liquid container.
Abstract:
A control circuit of a touch panel is disclosed. The touch panel includes first and second terminals drawn from a first resistive film; and third and fourth terminals drawn from a second resistive film. The control circuit includes a coordinate detection circuit configured to generate an impedance detection signal for an impedance of the touch panel and a voltage detection signal for at least one of voltages of the first to fourth terminals, which are used for generating a coordinate touched by a user. The control circuit further includes a memory configured to store initial data corresponding to an initial state impedance of at least one predetermined path of the touch panel. A calibration circuit of the control circuit acquires an operation state impedance of the path and calibrate the coordinate detection circuit based on detection data corresponding to the operation state impedance and the initial state impedance.
Abstract:
A touch type input device includes: a resistive film; an electrode formed along a portion of an outer periphery of the resistive film; a conductor installed with a gap between the resistive film and the conductor; a first line drawn from the electrode; and a second line connected to the conductor, wherein the resistive film and the conductor are configured to contact in a position touched by a user.
Abstract:
An input device includes: a housing including a transparent base; a touch sensor installed on the transparent base; and a camera installed inside the housing to monitor an outside of the housing via the transparent base.
Abstract:
The door handle device includes: a contact sensing unit including a guide groove and a contact sensing electrode, the guide groove configured to guide a water droplet falling on a door, the contact sensing electrode disposed in the guide groove and configured to sense a contact with the door; a locking unit configured to execute unlocking and locking of a door; and a control unit configured to instruct to the locking unit to keep locking the door if determining that the water droplet is in contact with the door, on the basis of a sensing result by the contact sensing electrode. There are provided: a contact sensing device; a door handle device and a control method for such a door handle device; and an electronic key system, for preventing a misoperation due to a water droplet adhering to a door handle of vehicles, which has an electrostatic locking mechanism.
Abstract:
A package includes: a plurality of lead frames configured to extend inwardly from an outer circumferential portion of the package; a die pad region surrounded with the lead frames in a plane view; a semiconductor chip mounted on the die pad region; a plurality of bonding pads disposed on the semiconductor chip; and a plurality of bonding wires configured to connect the lead frames and the bonding pads, respectively, wherein the bonding wires are respectively connected to front end portions of the lead frames by bonding with an angle ranging from 45 to 135 degrees with respect to a trace of front end portions of the lead frames in the plane view.
Abstract:
A package-in-substrate includes an exposed pad having a surface that is capable of contacting the outside; a semiconductor chip arranged on a surface opposite to the surface of the exposed pad; a molding resin for molding the semiconductor chip; and a lead frame extending from a side surface of the molding resin and having a leading end portion with a machined shape. The leading end portion of the lead frame is cut to have a cutting angel that is an acute angle formed by an extended straight line of the lead frame with respect to a top surface of a package.
Abstract:
An input method using a software keyboard, includes: displaying a software keyboard on a display device having a touch panel; monitoring an input from a user and detecting a sequence including input of an original character string, deletion of some or all of the original character string and re-input of a new character string; acquiring at least one of an incorrect input character contained in the original character string and a corresponding correct input character contained in the new character string; and correcting the software keyboard based on the incorrect input character and the correct input character.