Abstract:
A flexible printed circuit board (FPCB) assembly for a battery module includes a insulated flexible film and conductor patterns arranged inside the film in a predetermined form, and the conductor patterns transmit an electric signal. The FPCB assembly includes a main FPCB configured to extend in one direction; and a sub FPCB assembled to at least one side of the main FPCB and configured to extend in a direction different from the main FPCB.
Abstract:
The present invention consists of an implantable device with at least one package that houses electronics that sends and receives data or signals, and optionally power, from an external system through at least one coil attached to at least one package and processes the data, including recordings of neural activity, and delivers electrical pulses to neural tissue through at least one array of multiple electrodes that are attached to the at least one package. The device is adapted to electrocorticographic (ECoG) and local field potential (LFP) signals. A brain stimulator, preferably a deep brain stimulator, stimulates the brain in response to neural recordings in a closed feedback loop. The device is advantageous in providing neuromodulation therapies for neurological disorders such as chronic pain, post traumatic stress disorder (PTSD), major depression, or similar disorders. The invention and components thereof are intended to be installed in the head, or on or in the cranium or on the dura, or on or in the brain.
Abstract:
An electronic circuit contains a circuit board with conducting tracks to which one or more electronic components with conducting contacts are positioned overlying portions of the conducting tracks and each such electronic component is held in place by a clamp that is in contact with the top surface of the electronic components so as to hold their conducting contacts in electrical contact with the conducting tracks of the circuit board. The clamp can include a resilient layer held between the top surface of electronic components and a rigid clamping sheet.
Abstract:
A method of fixing reflowable elements on electrical contacts. The method includes providing a strip having a number of electrical contacts, each contact including a contact body and a tail portion extending away from the contact body. The tail portions of the contacts are then disposed adjacent an elongate reflowable member. The elongate reflowable member is pushed onto the tail portions of the plurality of contacts. Subsequently, the elongate reflowable member is cut into a plurality of separate reflowable elements, each reflowable element corresponding to one of the tail portions. The electrical contacts with the reflowable element attached thereto are separated from the strip.
Abstract:
A surface mounting discharge tube, comprise of a cylindrical ceramic envelope sealed at its two ends by side surfaces of electrodes, designed to be directly soldered on to a mounting board, where the electrodes at the two ends are rectangular, project outward radially at the ends of the ceramic envelope and are provided at peripheral edges at the side surfaces of the electrodes with soldering use tapers or step differences, whereby positional deviation at the time of soldering is suppressed and sufficient PCT properties are secured.
Abstract:
A contact tail for an electronic component useful for attachment of components using conductive adhesive, which may be lead (Pb)-free. The contact tail is stamped, providing a relatively low manufacturing cost and high precision. The contact tail has a distal portion with a large surface area per unit length. The distal portion shapes conductive adhesive into a joint, holding the adhesive adjacent the lead for a more secure joint. Additionally, the distal portion holds adhesive to the contact tail before a joint is formed, facilitating the use of an adhesive transfer process to dispense adhesive. To further aid in the transfer of adhesive, the contact tail may be formed with concave portions, which increase the volume of adhesive adhering to the contact tail. By adhering an increased but controlled amount of adhesive to the contact tail, arrays of contact tails may be simply and reliably attached to printed circuit boards and other substrates.
Abstract:
A contact tail for an electronic component useful for attachment of components using conductive adhesive, which may be lead (Pb)-free. The contact tail is stamped, providing a relatively low manufacturing cost and high precision. The contact tail has a distal portion with a large surface area per unit length. The distal portion shapes conductive adhesive into a joint, holding the adhesive adjacent the lead for a more secure joint. Additionally, the distal portion holds adhesive to the contact tail before a joint is formed, facilitating the use of an adhesive transfer process to dispense adhesive. To further aid in the transfer of adhesive, the contact tail may be formed with concave portions, which increase the volume of adhesive adhering to the contact tail. By adhering an increased but controlled amount of adhesive to the contact tail, arrays of contact tails may be simply and reliably attached to printed circuit boards and other substrates.
Abstract:
The invention provides a shield structure that allows an easy installment of a shield case on a circuit board with more strength and firmness even if the shield case is warped or distorted. The proposed shield case includes a frame member consisting of four sidewalls and a cover member covering a farther end of the frame member from the circuit board. The frame member comprises a supporting member for sustaining the frame member on the circuit board and end faces confronting the circuit board. The supporting member comprises three projections protruding from the end face toward the circuit board.
Abstract:
An electrical contact assembly that uses an elastomer strip for each row of individual contacts. Each contact comprises a rigid bottom pin and a flexible top pin with a pair of arms which extend over and slide along sloped surfaces of the bottom contact. The elastomer strip is located between rows of the bottom and top pins. A bottom socket housing is provided with grooves which receive each elastomer strip. A row of top pins is then placed over each elastomer strip, and through ducts in the bottom socket housing. Bottom pins are then snapped into place in between the pair of arms.