Abstract:
Isolated antibodies that specifically bind to an epitope comprised in the stretch of amino acids ranging from amino acid 76 to amino acid 84 of human insulin-like growth factor-1 precursor (SEQ ID NO:1). Use of the novel antibodies for the sensitive and specific detection of insulin-like growth factor-1, in some embodiments while in the presence of high excess concentration of insulin-like growth factor-2, for example in a bodily fluid sample.
Abstract translation:分离的抗体特异性结合包含在人类胰岛素样生长因子-1前体的氨基酸76至氨基酸84的氨基酸区段中的表位(SEQ ID NO:1)。 在一些实施方案中,当存在高过量浓度的胰岛素样生长因子-2(例如在体液样品中)时,使用新型抗体用于敏感和特异性检测胰岛素样生长因子-1。
Abstract:
A bivalent binding agent having a first monovalent binder that binds to a polypeptide epitope of a target polypeptide, a second monovalent binder that binds to a posttranslational polypeptide modification on the target polypeptide and a linker. Further disclosed are methods for the detection of a posttranslationally modified target polypeptide, for making the disclosed bivalent binding agent, and for use of the disclosed bivalent binding agent in histological staining procedures.
Abstract:
The present invention relates to a monoclonal antibody capable of binding to biotin. In one embodiment the monoclonal antibody according to the invention also does not bind to a biotin moiety on a biotinylated molecule, wherein the biotin moiety is attached to the molecule via the carbon atom of the carboxyl function of the valeric acid moiety of biotin. Also disclosed is a method for generation of an antibody as disclosed herein. The monoclonal antibody according to the invention is of specific use in a method for measuring an analyte in a sample, wherein a (strept)avidin/biotin pair is used to bind a biotinylated analyte specific binding agent to a (strept)avidin coated solid phase.
Abstract:
A bivalent binding agent, capable of binding a polypeptide dimer, consisting of two monovalent binders linked to each other via a linker, the first monovalent binder binds an epitope of a first target polypeptide comprised in said dimer and the second monovalent binder binds to an epitope of a second target polypeptide comprised in said dimer. Each monovalent binder has a Kdiss in the range of 5×10−3/sec to 10−4/sec, and the bivalent binding agent has a Kdiss of 3×10−5/sec or less. Methods of making and using such bivalent binding agent in histological staining procedures are also disclosed.
Abstract:
The present disclosure relates to novel bis-maleic anhydrides and to the surprising discovery that bis-maleic anhydride cross-linking agents can be used for preservation/fixation of a cell or tissue sample. Various bis-maleic anhydride cross-linking agent scan be used in methods requiring fixation of a cell or tissue sample. These reagents and methods are especially useful in procedures that require that the fixation agent be removed in order to facilitate analysis with other reagents. The inventive reagents and methods make it easier to reliably assay for various proteins, a nucleic acid and the like using analytical methods such as like immunohistochemistry, fluorescence in situ hybridization, RT-PCR, and the like.
Abstract:
The present invention relates to monoclonal antibodies binding to the Receptor Binding Domain of the Spike protein of SARS-CoV-2 virus, nucleic acids encoding said antibody, host cells producing the same, compositions and kits comprising said antibodies, method of detecting SARS-CoV-2 virus in a sample comprising using said antibodies and methods of using said antibodies in immunoassays.
Abstract:
The present invention relates to a monoclonal antibody capable of binding to biotin. In one embodiment the monoclonal antibody according to the invention also does not bind to a biotin moiety on a biotinylated molecule, wherein the biotin moiety is attached to the molecule via the carbon atom of the carboxyl function of the valeric acid moiety of biotin. Also disclosed is a method for generation of an antibody as discloed herein. The monoclonal antibody according to the invention is of specific use in a method for measuring an analyte in a sample, wherein a (strept)avidin/biotin pair is used to bind a biotinylated analyte specific binding agent to a (strept)avidin coated solid phase.
Abstract:
The present invention relates to an antibody or an antigen binding fragment thereof that specifically binds to α-1,6-core-fucosylated prostate specific antigen (PSA) and partial sequences thereof comprising the α-1,6-core-fucose residue. The antibodies and antigen binding fragments significantly discriminate between core-fucosylated PSA or core-fucosylated PSA partial sequences and other glycosylated PSA species and partial sequences thereof lacking the core-fucose residue, including aglycosylated PSA, as well as core-fucosylated glycan in other contexts. The present invention further relates to nucleic acid molecules encoding the light chain variable region or the heavy chain variable region of the antibody of the invention, as well as vectors comprising said nucleic acid molecules. The invention also relates to a host cell comprising the vector(s) of the invention, as well as to methods for the production of an antibody or antigen binding fragment of the invention comprising culturing the host cell of the invention under suitable conditions and isolating the antibody produced. Furthermore, the present invention relates to an antibody obtainable by the method of the invention, to a composition comprising at least one of the antibody or antigen binding fragment of the invention, the nucleic acid molecule of the invention, the vector of the invention, the host cell of the invention or the antibody produced by the method of the invention. The present invention also relates to the use of an antibody or antigen binding fragment of the invention for detecting and discriminating core-fucosylated PSA or core-fucosylated partial sequences thereof in biological samples.
Abstract:
The present disclosure relates to specific binding agents binding to different PIVKA-II forms as compared to antibodies known so far in the art. The present disclosure also relates to methods of using the specific binding agents to detect the presence of PIVKA-II.
Abstract:
The present invention relates to a method for determining the total amount and/or concentration of an analyte in the presence of a binding molecule as well as kits, compositions and uses relating thereto.