摘要:
An encapsulated MEMS process including a high-temperature anti-stiction coating that is stable under processing steps at temperatures over 450 C is described. The coating is applied after device release but before sealing vents in the encapsulation layer. Alternatively, an anti-stiction coating may be applied to released devices directly before encapsulation.
摘要:
A micromechanical component includes an anti-adhesive layer, formed from at least one fluorine-containing silane, applied to at least parts of its surface for reducing surface forces. To increase mechanical and thermal load capacity, the anti-adhesive layer is provided as a multilayer coating which is formed from at least one metal oxide layer and at least one layer composed of at least one fluorine-containing silane.
摘要:
Novel concepts are proposed for line terminations of coplanar lines that are as anechoic as possible, having a neutral wire and two outer conductors that are situated at least from section to section on both sides of the neutral wire, the line termination including at least one resistor element, via which the neutral wire is connected at its end with the two outer conductors. A connection at the end between the two outer conductors exists independently of the at least one resistor element. Alternatively or in supplementation to this, at least one resistor element of the line termination is situated at a slanting angle to the neutral wire, i.e. at an angle which is either greater or less than 90°.
摘要:
An encapsulated MEMS process including a high-temperature anti-stiction coating that is stable under processing steps at temperatures over 450 C is described. The coating is applied after device release but before sealing vents in the encapsulation layer. Alternatively, an anti-stiction coating may be applied to released devices directly before encapsulation.
摘要:
A tri-axis accelerometer includes a proof mass, at least four anchor points arranged in at least two opposite pairs, a first pair of anchor points being arranged opposite one another along a first axis, a second pair of anchor points being arranged opposite one another along a second axis, the first axis and the second axis being perpendicular to one another, and at least four spring units to connect the proof mass to the at least four anchor points, the spring units each including a pair of identical springs, each spring including a sensing unit.
摘要:
A mechanical structure is disposed in a chamber, at least a portion of which is defined by the encapsulation structure. A first method provides a channel cap having at least one preform portion disposed over or in at least a portion of an anti-stiction channel to seal the anti-stiction channel, at least in part. A second method provides a channel cap having at least one portion disposed over or in at least a portion of an anti-stiction channel to seal the anti-stiction channel, at least in part. The at least one portion is fabricated apart from the electromechanical device and thereafter affixed to the electromechanical device. A third method provides a channel cap having at least one portion disposed over or in at least a portion of the anti-stiction channel to seal an anti-stiction channel, at least in part. The at least one portion may comprise a wire ball, a stud, metal foil or a solder preform. A device includes a substrate, an encapsulation structure and a mechanical structure. An anti-stiction layer is disposed on at least a portion of the mechanical structure. An anti-stiction channel is formed in at least one of the substrate and the encapsulation structure. A cap has at least one preform portion disposed over or in at least a portion of the anti-stiction channel to seal the anti-stiction channel, at least in part.
摘要:
An encapsulated MEMS process including a high-temperature anti-stiction coating that is stable under processing steps at temperatures over 450° C. is described. The coating is applied after device release but before sealing vents in the encapsulation layer. Alternatively, an anti-stiction coating may be applied to released devices directly before encapsulation.
摘要:
An encapsulated MEMS process including a high-temperature anti-stiction coating that is stable under processing steps at temperatures over 450 C is described. The coating is applied after device release but before sealing vents in the encapsulation layer. Alternatively, an anti-stiction coating may be applied to released devices directly before encapsulation.
摘要:
An encapsulated MEMS process including a high-temperature anti-stiction coating that is stable under processing steps at temperatures over 450° C. is described. The coating is applied after device release but before sealing vents in the encapsulation layer. Alternatively, an anti-stiction coating may be applied to released devices directly before encapsulation.
摘要:
A device for controlling a device by using a rotation-rate sensor. In order to provide a device for determining a triggering signal for a safety device which allows a particularly compact implementation of the device, the device is set up to ascertain an acceleration variable on the basis of a first sensor signal for a first seismic mass of the rotation-rate sensor and the second sensor signal for a second seismic mass of the rotation-rate sensor and to control the device as a function of the acceleration variable.