Abstract:
The reaction of glycidyl methacrylate (GMA) with an ionogenic methacrylate ester containing amine groups of the tertiary type such as dimethylaminoethyl methacrylate (DMAEMA) in the presence of an acidic water solution produces a new and novel water soluble, ionic, cross-linking, methacrylate bifunctional monomer which is useful in the manufacture of anion exchange polymers while employing an aqueous solvent system.
Abstract:
Some embodiments of the invention relate to an electrodeionization device that includes comprising a generally cylindrical housing. The cylindrical housing includes a cylindrical inner core and an inner electrode that extends around the inner core. The cylindrical housing includes a leaf arranged as a spiral winding about the inner electrode and an outer electrode that extends about the spiral winding. Active treatment cells are defined by spaces within the spiral winding and by interleaf spaces thereof. One or more sealing bands extend between membranes of the spiral winding to define fluid flow.
Abstract:
The invention provides ion exchange and electrochemical methods and devices employing anion exchange polymers produced by substantially simultaneous quaternization and polymerization reactions. Anion selective polymers are produced in accordance with the invention by combining, an ethylenic tertiary amine monomer, an alkylating agent having a boiling point temperature of at least about 100° C., and a cross-linking agent in the presence of a polymerizing agent for a time and at a temperature sufficient to form the polymer. The alkylating agent and the cross-linking agent may be the same compound, a cross-linking alkylating agent. The polymers may be produced in the presence of solvents and/or in the presence of diluting monomers which are incorporated into the polymers.
Abstract:
Improved electrodialysis (ED) stacks are disclosed having one or more components selected from the group:a) cation exchange membranes having ion exchange groups predominantly sulfonic acid groups and a minor amount of weakly acidic and/or weakly basic groups or membranes which are selective to monovalent cations and simultaneously therewith, cation exchange granules selective to monovalent cations as packing in the dilute compartments;b) anion exchange membranes having as ion exchange groups only quaternary ammonium and/or quaternary phosphonium groups and substantially no primary, secondary and/or tertiary amine and/or phosphine groups or membranes which are selective to monovalent anions simultaneously therewith, anion exchange granules selective to monovalent anions as packing in the dilute compartments;c) as packing in the dilute compartment, anion exchange granules which are selective to monovalent anions, or cation exchange granules which are selective to monovalent cations, or cation exchange granules having as exchange groups a predominant amount of sulfonic acid groups and a minor amount of weakly acidic and/or weakly basic groups, or anion exchange granules consisting of organic polymers having as anion exchange groups only quaternary ammonium and/or quaternary phosphonium groups and almost no primary, secondary and/or tertiary amine and/or phosphine groups.
Abstract:
Improved electrodialysis (ED) stacks are disclosed having one or more components selected from the group: a) cation exchange membranes having ion exchange groups predominantly sulfonic acid groups and a minor amount of weakly acidic and/or weakly basic groups or membranes which are selective to monovalent cations and simultaneously therewith, cation exchange granules selective to monovalent cations as packing in the dilute compartments; b) anion exchange membranes having as ion exchange groups only quaternary ammonium and/or quaternary phosphonium groups and substantially no primary, secondary and/or tertiary amine and/or phosphine groups or membranes which are selective to monovalent anions simultaneously therewith, anion exchange granules selective to monovalent anions as packing in the dilute compartments; c) as packing in the dilute compartment, anion exchange granules which are selective to monovalent anions, or cation exchange granules which are selective to monovalent cations, or cation exchange granules having as exchange groups a predominant amount of sulfonic acid groups and a minor amount of weakly acidic and/or weakly basic groups, or anion exchange granules consisting of organic polymers having as anion exchange groups only quaternary ammonium and/or quaternary phosphonium groups and almost no primary, secondary and/or tertiary amine and/or phosphine groups.
Abstract:
Processes for manufacturing in an environmentally friendly way, continuous, supported ion exchange membranes from (I) liquids containing vinyl and related monomeric electrolytes and high boiling solvents, the solvents also being swelling agents for the membranes; and (II) an indefinitely long, foraminous substrate.
Abstract:
A water or alcohol-water soluble divinyl monomer having anion exchange group(s) and a free exchangeable anion is disclosed. These bifunctional divinyl monomers are capable of forming ion exchange materials (membranes and ion exchange resin beads) upon polymerization with added vinyl catalysts which convert them into insoluble and infusible polymers. They are also capable of being co-polymerized with other ion exchange (ion containing) monomers to give unique anion exchange resins or membranes.
Abstract:
A sheet having anion exchange functionality and a sheet having cation exchange functionality are juxtaposed and joined by current bonding into a unitary bipolar membrane. This may be done without added reactants or bonding agents by placing the two-layer assembly between opposed electrodes in a fluid cell, preferably at pressure, and applying power across the cell to split water in a junction region of the membrane assembly. Preferably the anion exchange sheet is treated with an iron salt solution so as to incorporate or immobilize the metal in the polymer during the current bonding process, and enhance operating characteristics of the bipolar junction. Membrane peel strength is comparable to or greater than that of an underlying sheet of ion exchange material, but the bonding is fully reversible, e.g., by soaking in a concentrated solution. Preferably both sheets include an aromatic backbone or cross-linker component. One membrane may be a self supporting membrane, such as a conventional electrodialysis exchange membrane of 5-50 mil (0.12-1.2 mm) thickness, while the other may also be a commercial membrane of opposite exchange type and of similar strength or thickness, or may be specially manufactured to tailor its performance in the completed membrane. For example, one or both starting sheets may be manufactured with a pore former or may otherwise have its porosity, cross-linking, strength, ion rejection characteristics or thickness tailored for more effective bipolar operation—for example, to enhance transport or diffusion, resist shear or mechanical forces, improve chemical resistance to splitting products or species in the intended feed, or the like. Preferably, prior to contacting and bonding, the anion exchange membrane is treated with a group VIII metal salt. The current-bonded unitary bilayer construction remains contact bonded over its surface and resists degradation in normal use.
Abstract:
This invention is directed to producing highly concentrated solutions of methylenebisacrylamide and thereafter blending with ionogenous acrylic monomers to produce low porosity, highly crosslinked, water insoluble polymers.
Abstract:
This invention is directed to highly crosslinked, substantially water insoluble, cation exchange membranes prepared from homogeneous solutions comprising at least one substantially water soluble polar solvent (including water) at least one substantially water soluble polymerizable monomeric onium styrene sulfonate McKee type salt and/or substantially water soluble monomeric, polymerizable derivative thereof and at least one substantially water insoluble, di-, tri- or poly-ethylenic (vinyl or related) crosslinking monomer copolymerizable with said sulfonate salt. Membranes, especially useful in electrodialysis, may be obtained in "one-step" processes which require no further chemical reactions after polymerization.