Abstract:
In a method of reducing reliability degradation of a nonvolatile memory device, the nonvolatile memory device in which initial data having an initial threshold voltage distribution is stored in a plurality of memory cells connected to a plurality of wordlines is provided. Before a first process causing reliability degradation is performed, a first write operation is performed such that first data having a first threshold voltage distribution is stored into memory cells connected to first wordlines. The first wordlines have a degree of reliability degradation less than a reference value. Before the first process is performed, a second write operation is performed such that second data having a second threshold voltage distribution is stored into memory cells connected to second wordlines. The second wordlines have a degree of reliability degradation greater than or equal to the reference value.
Abstract:
A non-volatile memory device receives a read command and an address from a controller, and performs a data recovery read operation in response to the read command. In the data recovery read operation, an operation of obtaining aggressor group information from a memory cell connected to a word line adjacent to a word line selected according to the address, and an operation of recovering data corresponding to the obtained aggressor group information in a memory cell connected to the word line selected according to the address, are repeatedly performed on each of a plurality of aggressor groups.
Abstract:
In accordance with an aspect of the disclosure, a cable comprises a flexible cable portion; and an end cable portion connected to one end of the flexible cable portion, wherein the flexible cable portion comprises: a first wire comprising one or more signal transmission lines; and a second wire comprising one or more fill-cut areas corresponding to the signal transmission lines and at least one or more ground lines.
Abstract:
In accordance with an aspect of the disclosure, a cable comprises a flexible cable portion; and an end cable portion connected to one end of the flexible cable portion, wherein the flexible cable portion comprises: a first wire comprising one or more signal transmission lines; and a second wire comprising one or more fill-cut areas corresponding to the signal transmission lines and at least one or more ground lines.
Abstract:
An electronic device includes a Wi-Fi module configured to perform communication in a first frequency band, a communication module configured to wirelessly communicate with a given network in a second frequency band, a first processor operatively connected to the communication module, a second processor operatively connected to the Wi-Fi module and the first processor, and a memory operatively connected to the second processor. The memory may store instructions, that when executed by the second processor, cause the second processor to receive, from the first processor, a message notifying a state of the electronic device wirelessly communicating with the given network and to lower transmit power of the Wi-Fi module in response to the message.
Abstract:
A terminal device is provided. The terminal device includes a communication interface, and a processor configured to receive performance information of one or more other terminal devices from each of the one or more other terminal devices, identify an edge device to perform voice recognition based on the performance information received from each of the one or more other terminal devices, based on the terminal device being identified as the edge device, receive information associated with reception quality from one or more other terminal devices which receive a sound wave including a triggering word, determine a terminal device to acquire the sound wave for voice recognition from based on the received information associated with the reception quality, and transmit, to the determined terminal device, a command to transmit the sound wave acquired for voice recognition to an external voice recognition device.
Abstract:
A glasses-type electronic device is provided. The glasses-type electronic device includes a lens frame, a camera and a display, a first wearing member extending from one end of the lens frame and including a first printed circuit board (PCB) disposed therein, a second wearing member extending from the other end of the lens frame and including a second PCB disposed therein, and a flexible PCB (FPCB) extending from the first PCB through the lens frame unit and electrically connected to the second PCB. A first wiring line of the FPCB is located in at least a portion of an uppermost layer or a lowermost layer of the FPCB, and a second wiring line of the FPCB is located in at least a portion of an inner layer of the FPCB.
Abstract:
Provided are a flexible flat cable and a method of producing the same. The flexible flat cable includes a plate-shaped first insulation portion comprising an insulating material; a first ground, a second ground, and a third ground disposed at predetermined intervals on the first insulation portion; at least one first signal transmission line positioned between the first ground and the second ground and disposed on the first insulation portion; at least one second signal transmission line positioned between the second ground and the third ground and disposed on the first insulation portion; a first second insulation portion disposed on at least a portion of the first ground and at least a portion of the at least one first signal transmission line and the second ground; a second insulation portion disposed on at least a portion of the second ground and at least a portion of the at least one second signal transmission line, and the third ground; a conductive adhesive layer configured to enclose the first insulation portion, the first second insulation portion, and the second insulation portion; and a shielding portion comprising a shielding material adhered to an outside of the conductive adhesive layer. Therefore, by improving shielding efficiency of a plurality of signal transmission lines, while having good electromagnetic interference and crosstalk characteristics, a plurality of signals can be simultaneously transmitted.
Abstract:
A flexible cable is provided. The flexible cable includes a first insulation part, a second insulation part disposed on the first insulation part, a first group of ground parts disposed at regular intervals under the first insulation part, at least one transmission line disposed at regular intervals under the first insulation part and alternately arranged with the first group of ground parts, an air gap formed under the first insulation part, a prepreg layer disposed under the first insulation part, and a third insulation part disposed under the air gap and the prepreg layer. The air gap is configured to prevent signals emitted from the at least one transmission line from propagating in a direction of the air gap. Hence, it is possible to shield electromagnetic interference with other electronic components while minimizing the signal loss.