Abstract:
Provided is a wireless power data transmission system that may transmit wireless power and may transmit data using wireless power. A wireless power transmitter may include capacitors, and may convert an electrical connection of the capacitors to a parallel connection for charging. The wireless power transmitter may also convert the electrical connection of at least two of the capacitors to a series connection for discharging.
Abstract:
A wireless power transmitter includes a source resonator configured to transmit wireless power by resonating with a target resonator, a first power supply configured to supply power to the source resonator, a first switch configured to turn ON/OFF a connection between of the source resonator to the first power supply, and a controller configured to match an impedance of the source resonator by estimating a distance between the source resonator and the target resonator.
Abstract:
A wearable device to monitor a biosignal includes a wearable sensor configured to monitor the biosignal of an individual and an interactor configured to supply a charging power to the wearable sensor in response to a connection to the wearable sensor.
Abstract:
A biosignal detecting apparatus and method thereof are disclosed, including a ring-type main body, and a pair of electrodes configured to be in contact with a finger of a user and to detect a biosignal of the user. An electrode of the pair of electrodes is disposed along an inner surface of the main body.
Abstract:
A parallel biometric signal processor and a method of controlling the parallel biometric signal processor are described. The processor and corresponding method include amplifiers configured to amplify a biometric signal based on an amplifying attribute and converters configured to convert the amplified signal to a converted signal based on a converting attribute. The processor also includes preprocessors configured to preprocess the converted signal based on a preprocessing attribute, and feature extractors configured to extract a set of biometric information from an output signal of the preprocessors.
Abstract:
Provided is a method and apparatus to adaptively set a threshold for signal demodulation. The apparatus and the method include adaptively setting a threshold to demodulate a currently received symbol based on the demodulation value of a previously received symbol based on a comparison value. The comparison value is obtained by comparing a number of previously received symbols having a demodulation value of “0” and a number of currently received symbols having a demodulation value of “1”.
Abstract:
A device, a method, and a system recognize a motion using a gripped object. The motion recognition device may estimate a state of a wrist of a user according to a writing action using the gripped object and may estimate a joint motion of a body part related to the wrist according to the writing action. The device may then estimate a state of the gripped object according to the state of the wrist and the joint motion. Additionally, the motion recognition device may control an external device by using a control signal generated by continuously tracking the state of the object.
Abstract:
A method and a wearable device to sense a motion of a user may include a motion sensor configured to sense a motion signal from a motion of a user of the wearable device, and a processor configured to calculate a motion of the wearable device based on the motion signal and position related information from a neighbor wearable device.
Abstract:
A multiply-accumulate (MAC) computation circuit includes: a source bit cell block configured to determine a MAC operation result of an input signal based on a plurality of source bit cells; a replica bit cell block comprising a plurality of replica bit cells corresponding to the plurality of source bit cells; and a readout circuit configured to read out a digital value of the MAC operation result using the replica bit cell block.
Abstract:
A multiply-accumulate (MAC) computation circuit includes: a bit-cell array configured to generate an analog output corresponding to a MAC operation result of an input signal; a first analog-to-digital conversion (ADC) circuit configured to determine an upper part of a digital output corresponding to the analog output; and a second ADC circuit configured to determine a lower part of the digital output based on a reference voltage corresponding to the upper part.